Leadless Cardiac Pacemakers

Policy # 00688
Original Effective Date: 01/01/2020
Current Effective Date: 11/14/2022

Applies to all products administered or underwritten by Blue Cross and Blue Shield of Louisiana and its subsidiary, HMO Louisiana, Inc. (collectively referred to as the “Company”), unless otherwise provided in the applicable contract. Medical technology is constantly evolving, and we reserve the right to review and update Medical Policy periodically.

Services Are Considered Investigational
Coverage is not available for investigational medical treatments or procedures, drugs, devices or biological products.

Based on review of available data, the Company considers leadless cardiac pacemakers, including the Micra transcatheter pacing system, in all situations to be investigational.*

Background/Overview

Conventional Pacemakers
Pacemakers are intended to be used as a substitute for the heart’s intrinsic pacing system to correct cardiac rhythm disorders. By providing an appropriate heart rate and heart rate response, cardiac pacemakers can reestablish effective circulation and more normal hemodynamics that are compromised by a slow heart rate. Pacemakers vary in system complexity and can have multiple functions as a result of the ability to sense and/or stimulate both the atria and the ventricles.

Transvenous pacemakers or pacemakers with leads (hereinafter referred to as conventional pacemakers) consist of two components: a pulse generator (ie, battery component) and electrodes (ie, leads). The pulse generator consists of a power supply and electronics that can provide periodic electrical pulses to stimulate the heart. The generator is commonly implanted in the infraclavicular region of the anterior chest wall and placed in a pre-pectoral position; in some cases, a subpectoral position is advantageous. The unit generates an electrical impulse, which is transmitted to the myocardium via the electrodes affixed to the myocardium to sense and pace the heart as needed.

Conventional pacemakers are also referred to as single-chamber or dual-chamber systems. In single-chamber systems, only one lead is placed, typically in the right ventricle. In dual-chamber pacemakers, two leads are placed one in the right atrium and the other in the right ventricle. Single-chamber ventricular pacemakers are more common.

* ©2022 Blue Cross and Blue Shield of Louisiana

Blue Cross and Blue Shield of Louisiana is an independent licensee of the Blue Cross and Blue Shield Association and incorporated as Louisiana Health Service & Indemnity Company.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without permission from Blue Cross and Blue Shield of Louisiana.

Page 1 of 20
Leadless Cardiac Pacemakers

Policy # 00688
Original Effective Date: 01/01/2020
Current Effective Date: 11/14/2022

Annually, approximately 200,000 pacemakers are implanted in the U. S. and 1 million worldwide. Implantable pacemakers are considered life-sustaining, life-supporting class III devices for patients with a variety of brady arrhythmias. Pacemaker systems have matured over the years with well-established, acceptable performance standards. As per the Food and Drug Administration (FDA), the early performance of conventional pacemaker systems from implantation through 60 to 90 days have usually demonstrated acceptable pacing capture thresholds and sensing. Intermediate performance (90 days through more than 5 years) has usually demonstrated the reliability of the pulse generator and lead technology. Chronic performance (5-10 years) includes a predictable decline in battery life and mechanical reliability but a vast majority of patients receive excellent pacing and sensing free of operative or mechanical reliability failures.

Even though the safety profile of conventional pacemakers is excellent, they are associated with complications particularly related to leads. Most safety data on the use of conventional pacemakers come from registries from Europe, particularly from Denmark where all pacemaker implants are recorded in a national registry. These data are summarized in Table 1. It is important to recognize that valid comparison of complication rates is limited by differences in definitions of complications, which results in a wide variance of outcomes, as well as by the large variance in follow-up times, use of single-chamber or dual-chamber systems, and data reported over more than two decades. As such, the following data are contemporary and limited to single-chamber systems when reported separately.

In many cases when a conventional pectoral approach is not possible, alternative approaches such as epicardial pacemaker implantation and trans-iliac approaches have been used. Cohen et al (2001) reported outcomes from a retrospective analysis of 123 patients who underwent 207 epicardial lead implantations. Congenital heart disease was present in 103 (84%) of the patients. Epicardial leads were followed for 29 months (range 1 to 207 months). Lead failure was defined as the need for replacement or abandonment due to pacing or sensing problems, lead fracture, or phrenic/muscle stimulation. The 1-, 2-, and 5-year lead survival was 96%, 90%, and 74%, respectively. Epicardial lead survival in those placed by a subxiphoid approach was 100% at 1 year and at 10 years, by the sternotomy approach (93.9% at 1 year and 75.9% at 10 years) and lateral thoracotomy approach (94.1% at 1 year and 62.4% at 10 years).

Doll et al (2008) reported results of a randomized controlled trial comparing epicardial implantation vs conventional pacemaker implantation in 80 patients with indications for cardiac
Leadless Cardiac Pacemakers

Policy # 00688
Original Effective Date: 01/01/2020
Current Effective Date: 11/14/2022

resynchronization therapy. The authors reported that the conventional pacemaker group had a significantly shorter intensive care unit stay, less blood loss, and shorter ventilation times while the epicardial group had less exposure to radiation and less use of contrast medium. The left ventricular pacing threshold was similar in the two groups at discharge but longer in the epicardial group during follow-up. Adverse events were also similar in the two groups. The following events were experienced by one (3%) patient each in the epicardial group: pleural puncture, pneumothorax, wound infection, acute respiratory distress syndrome, and hospital mortality.

As a less invasive alternative to the epicardial approach, the trans-iliac approach has also been utilized. Data using trans-iliac approach is limited. Multiple other studies with smaller sample size report a wide range of lead longevity.

Harakeet al (2018) reported a retrospective analysis of 5 patients who underwent a transvenous iliac approach (median age 26.9 years). Pacing indications included AV block in three patients and sinus node dysfunction in two. After a median follow-up of 4.1 years (range 1.0-16.7 years), outcomes were reported for 4 patients. One patient underwent device revision for lead position-related groin discomfort; a second patient developed atrial lead failure following a Maze operation and underwent lead replacement by the iliac approach. One patient underwent heart transplantation six months after implant with only partial resolution of pacing-induced cardiomyopathy. Tsutsumi et al (2010) reported a case series of 4 patients from Japan in whom conventional pectoral approach was precluded due to recurrent lead infections (n=1), superior vena cava obstruction following cardiac surgery (n=2) and a postoperative dermal scar (n=1). The mean follow-up was 24 months and the authors concluded the iliac vein approach was satisfactory and less invasive alternative to epicardial lead implantation. However, the authors reported that the incidence of atrial lead dislodgement using this approach in the literature ranged from 7 to 21%. Experts who provided clinical input reported that trans-iliac or surgical epicardial approach requires special expertise and long-term performance is suboptimal.

Table 1. Reported Complication Rates with Conventional Pacemakers

Complications	Rates, %

©2022 Blue Cross and Blue Shield of Louisiana

Blue Cross and Blue Shield of Louisiana is an independent licensee of the Blue Cross and Blue Shield Association and incorporated as Louisiana Health Service & Indemnity Company.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without permission from Blue Cross and Blue Shield of Louisiana.
Traumatic complications

<table>
<thead>
<tr>
<th>Condition</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>RV perforation</td>
<td>0.2-0.8</td>
</tr>
<tr>
<td>RV perforation with tamponade</td>
<td>0.07-0.4</td>
</tr>
<tr>
<td>Pneumo (hemo) thorax</td>
<td>0.7-2.2</td>
</tr>
</tbody>
</table>

Pocket complications

<table>
<thead>
<tr>
<th>Condition</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Including all hematomas, difficult to control bleeding, infection, discomfort, skin erosion</td>
<td>4.75</td>
</tr>
<tr>
<td>Including only those requiring invasive correction or reoperation</td>
<td>0.66-1.0</td>
</tr>
</tbody>
</table>

Lead-related complications

<table>
<thead>
<tr>
<th>Condition</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Including lead fracture, dislodgement, insulation problem, infection, stimulation threshold problem, diaphragm or pocket stimulation, other</td>
<td>1.6-3.8</td>
</tr>
<tr>
<td>All system-related infections requiring reoperation or extraction</td>
<td>0.5-0.7</td>
</tr>
</tbody>
</table>

Adapted from FDA executive summary memorandum (2016).

Rates are for new implants only and ventricular single-chamber devices when data were available. Some rates listed in this column are for single- and dual-chamber devices when data were not separated in the publication. Note that Micra transcatheter pacing system is a single-chamber device.
Potential Advantages of Leadless Cardiac Pacemakers Over Conventional Pacemakers

The potential advantages of leadless pacemakers fall into three categories: avoidance of risks associated with intravascular leads in conventional pacemakers, avoidance of risks associated with pocket creation for placement of conventional pacemakers, and an additional option for patients who require a single-chamber pacer.

Lead complications include lead failure, lead fracture, insulation defect, pneumothorax, infections requiring lead extractions and replacements that can result in a torn subclavian vein or the tricuspid valve. In addition, there are risks of venous thrombosis and occlusion of the subclavian system from the leads. Use of a leadless system eliminates such risks with the added advantage that a patient has vascular access preserved for other medical conditions (eg, dialysis, chemotherapy).

Pocket complications include infections, erosions, and pain that can be eliminated with leadless pacemakers. Further, a leadless cardiac pacemaker may be more comfortable and appealing because unlike conventional pacemakers, patients are unable to see or feel the device or have an implant scar on the chest wall.

Leadless pacemakers may also be a better option than surgical endocardial pacemakers for patients with no vascular access due to renal failure or congenital heart disease.

Leadless Cardiac Pacemakers in Clinical Development

Leadless pacemakers are self-contained in a hermetically sealed capsule. The capsule houses a battery and electronics to operate the system. Similar to most pacing leads, the tip of the capsule includes a fixation mechanism and a monolithic controlled-release device. The controlled-release device elutes gluco-corticosteroid to reduce acute inflammation at the implantation site. Leadless pacemakers have rate-responsive functionality, and current device longevity estimates are based on bench data. Estimates have suggested that these devices may last over ten years, depending on the programmed parameters.

Three systems are currently being evaluated in clinical trials: (1) the Micra Transcatheter Pacing System (Medtronic), (2) the Aveir VR Leadless Pacemaker (Abbott; formerly Nanostim, St. Jude Medical); and (3) the WiCS Wireless Cardiac Stimulation System (EBR Systems). The first 2 devices are free-standing capsule-sized devices that are delivered via femoral venous access using a steerable delivery sheath. However, the fixing mechanism differs between the 2 devices. In the Micra
Leadless Cardiac Pacemakers

Policy # 00688
Original Effective Date: 01/01/2020
Current Effective Date: 11/14/2022

Transcatheter Pacing System, the fixation system consists of 4 self-expanding nitinol tines, which anchor into the myocardium; for the Aveir device, there is a screw-in helix that penetrates into the myocardium. In both devices, the cathode is steroid eluting and delivers pacing current; the anode is located in a titanium case. The third device, WiCS system differs from the other devices; this system requires implanting a pulse generator subcutaneously near the heart, which then wirelessly transmits ultrasound energy to a receiver electrode implanted in the left ventricle. The receiver electrode converts the ultrasound energy and delivers electrical stimulation to the heart sufficient to pace the left ventricle synchronously with the right.

Of these 3, only the Micra and Aveir single-chamber transcatheter pacing systems are approved by the FDA and commercially available in the U.S. Multiple clinical studies of the Aveir predecessor device, Nanostim, have been published but trials have been halted due to the migration of the docking button in the device and premature battery depletion. These issues have since been addressed with the Aveir device.

The Micra is about 26 mm in length and introduced using a 23 French catheter via the femoral vein to the right ventricle. It weighs about 2 grams and has an accelerometer-based rate response. The Aveir is about 42 mm in length and introduced using a 25 French catheter to the right ventricle. It also weighs about 3 grams and uses a temperature-based rate response sensor.

FDA or Other Governmental Regulatory Approval

U.S. Food and Drug Administration (FDA)

In April 2016, the Micra™ transcatheter pacing system (Medtronic) was approved by the U.S. Food and Drug Administration (FDA) through the premarket approval process (PMA number: P150033) for use in patients who have experienced one or more of the following conditions:

- symptomatic paroxysmal or permanent high-grade arteriovenous block in the presence of atrial fibrillation
- paroxysmal or permanent high-grade arteriovenous block in the absence of atrial fibrillation, as an alternative to dual-chamber pacing, when atrial lead placement is considered difficult, high-risk, or not deemed necessary for effective therapy
- symptomatic bradycardia-tachycardia syndrome or sinus node dysfunction (sinus bradycardia or sinus pauses), as an alternative to atrial or dual-chamber pacing, when atrial
Leadless Cardiac Pacemakers

Policy # 00688
Original Effective Date: 01/01/2020
Current Effective Date: 11/14/2022

lead placement is considered difficult, high-risk, or not deemed necessary for effective therapy.

In January 2020, the Micra AV Transcatheter Pacing System Model MC1AVR1 and Application Software Model SW044 were approved as a PMA supplement (S061) to the Micra system described above. The Micra AV includes an enhanced algorithm to provide AV synchronous pacing.

In November 2021, the U.S. FDA issued a letter to health care providers regarding the risk of major complications related to cardiac perforation during implantation of leadless pacing systems. Specifically, the FDA states that "real-world use suggests that cardiac perforations associated with Micra leadless pacemakers are more likely to be associated with serious complications, such as cardiac tamponade or death, than with traditional pacemakers."

In March 2022, the Aveir™VR Leadless Pacemaker was approved by the U.S. FDA through the premarket approval process (PMA number: P150035) for use in patients with bradycardia and:
- normal sinus rhythm with only rare episodes of A-V block or sinus arrest
- chronic atrial fibrillation
- severe physical disability.

Rate-Modulated Pacing is indicated for patients with chronotropic incompetence, and for those who would benefit from increased stimulation rates concurrent with physical activity.

Rationale/Source
This medical policy was developed through consideration of peer-reviewed medical literature generally recognized by the relevant medical community, U.S. Food and Drug Administration approval status, nationally accepted standards of medical practice and accepted standards of medical practice in this community, technology evaluation centers, reference to federal regulations, other plan medical policies, and accredited national guidelines.

Pacemakers are intended to be used as a substitute for the heart’s intrinsic pacing system to correct cardiac rhythm disorders. Conventional pacemakers consist of 2 components: a pulse generator and electrodes (or leads). Pacemakers are considered life-sustaining, life-supporting class III devices for patients with a variety of bradyarrhythmias. Even though the efficacy and safety profile of
Leadless Cardiac Pacemakers

Policy # 00688
Original Effective Date: 01/01/2020
Current Effective Date: 11/14/2022

conventional pacemakers are excellent, in a small proportion of patients, they may result in lead complications and the requirement for a surgical pocket. Further, some patients are medically ineligible for conventional pacemakers due to lack of venous access and recurrent infection. Leadless pacemakers are single-unit devices that are implanted in the heart via femoral access, thereby eliminating the potential for complications as a result of leads and surgical pocket. The Micra and Aveir single-chamber transcatheter pacing systems are the only commercially available leadless pacemakers in the U.S. approved by the U.S. Food and Drug Administration.

Summary of Evidence
For individuals with a guidelines-based indication for a ventricular pacing system who are medically eligible for a conventional pacing system who receive a single-chamber transcatheter pacing system, the evidence includes pivotal prospective cohort studies, a post approval prospective cohort study, a Medicare registry, and a retrospective FDA database analysis. Relevant outcomes are overall survival, disease-specific survival, and treatment-related mortality and morbidity. Results at 6 months and 1 year for the Micra pivotal study reported high procedural success (>99%) and device effectiveness (pacing capture threshold met in 98% of patients). Most of the system- or procedure-related complications occurred within 30 days. At 1 year, the incidence of major complications did not increase substantially from 6 months (3.5% at 6 months vs. 4% at 1 year). Results of the Micra post approval study were consistent with the pivotal study and showed a lower incidence of major complications up to 30 days post implantation as well as 1 year (1.5% and 2.7%, respectively). In both studies, the point estimates of major complications were lower than the pooled estimates from 6 studies of conventional pacemakers used as a historical comparator. While Micra device eliminates lead- and surgical pocket-related complications, its use can result in potentially more serious complications related to implantation and release of the device (traumatic cardiac injury) and less serious complications related to the femoral access site (groin hematomas, access site bleeding). Initial data from a Medicare registry found a significantly higher rate of pericardial effusion and/or perforation within 30 days in patients with the leadless Micra pacemaker compared to patients who received a transvenous device; however, overall 6-month complications rates were significantly lower in the Micra group in the adjusted analysis (p=.02). In a real-world study of Medicare patients, the Micra device was associated with a 38% lower adjusted rate of reinterventions and a 31% lower adjusted rate of chronic complications compared with transvenous pacing, with no significant difference in adjusted all-cause mortality at 2 years despite the higher comorbidity index for patients implanted with a Micra device. However, patients receiving the Micra leadless pacemaker experienced significantly more other complications, driven by higher rates of pericarditis (adjusted,
Leadless Cardiac Pacemakers

Policy # 00688
Original Effective Date: 01/01/2020
Current Effective Date: 11/14/2022

1.6% vs. 0.8%; p<.0001). It is also unclear whether all patients were considered medically eligible for a conventional pacing system. The Aveir pivotal prospective cohort study primary safety and efficacy outcomes at 6 weeks exceeded performance goals for complication-free rate and composite success rate (96.0% and 95.9%, respectively). Results at 6 months were similar. Incidence of major complications was comparable to rates observed in the Micra pivotal trial (4.0%). The 2-year survival estimate of 85.3% is based on Phase 1 performance with the predecessor Nanostim device. Considerable uncertainties and unknowns remain in terms of the durability of the devices and device end-of-life issues. Early and limited experience with the Micra device has suggested that retrieval of these devices is unlikely because in due course, the device will be encapsulated. There are limited data on device-device interactions (both electrical and mechanical), which may occur when there is a deactivated Micra device alongside another leadless pacemaker or when a leadless pacemaker and transvenous device are both present. Although the Aveir device is specifically designed to be retrieved when therapy needs evolve or the device needs to be replaced, clinical experience with device retrieval has not yet been reported. While the current evidence is encouraging, overall benefit with the broad use of FDA-approved single-chamber transcatheter pacing systems compared with conventional pacemakers has not been shown. The evidence is insufficient to determine that the technology results in an improvement in the net health outcome.

For individuals with a guidelines-based indication for a ventricular pacing system who are medically ineligible for a conventional pacing system who receive a single-chamber transcatheter pacing system, the evidence includes subgroup analysis of a pivotal prospective cohort study and a post approval prospective cohort study for the Micra device. It is unclear whether the Aveir pivotal study enrolled patients medically ineligible for a conventional pacing system. Relevant outcomes are overall survival, disease-specific survival, and treatment-related mortality and morbidity. Information on the outcomes in the subgroup of patients from the post approval study showed that the Micra device was successfully implanted in 98% to 99% of cases, and safety outcomes were similar to the original cohort. Even though the evidence is limited and long-term effectiveness and safety are unknown, the short-term benefits may outweigh the risks because the complex trade-off of adverse events for these devices needs to be assessed in the context of the life-saving potential of pacing systems for patients ineligible for conventional pacing systems. There are little data available regarding outcomes associated with other alternatives to conventional pacemaker systems such as epicardial leads or transiliac placement. Epicardial leads are most relevant for the patient who is already going to have a thoracotomy for treatment of their underlying condition (e.g., congenital heart disease). Epicardial leads are associated with a longer intensive care unit stay, more blood loss,
Leadless Cardiac Pacemakers

Policy # 00688
Original Effective Date: 01/01/2020
Current Effective Date: 11/14/2022

and longer ventilation times compared to conventional pacemaker systems. The evidence for transiliac placement is limited to small case series and the incidence of atrial lead dislodgement using this approach in the literature ranged from 7% to 21%. The evidence is insufficient to determine that the technology results in an improvement in the net health outcome.

Supplemental Information

Clinical Input from Physician Specialty Societies and Academic Medical Centers

While the various physician specialty societies and academic medical centers may collaborate with and make recommendations during this process, through the provision of appropriate reviewers, input received does not represent an endorsement or position statement by the physician specialty societies or academic medical centers, unless otherwise noted.

2019

Clinical input was sought to help determine whether the use of leadless cardiac pacemakers for individuals with a guidelines-based indication for a ventricular pacing system would provide a clinically meaningful improvement in net health outcome and whether the use is consistent with generally accepted medical practice. In response to requests, clinical input was received from 2 respondents, including 1 specialty society-level response and 1 physician-level response identified through specialty societies including physicians with academic medical center affiliations.

For individuals with a guidelines-based indication for a ventricular pacing system who are medically ineligible for a conventional pacing system who receive a Micra transcatheter pacing system, clinical input supports this use provides a clinically meaningful improvement in net health outcomes and indicates this use is consistent with generally accepted medical practice in a subgroup of appropriately selected patients when both conditions below are met:

- The patient has symptomatic paroxysmal or permanent high-grade arteriovenous block or symptomatic bradycardia-tachycardia syndrome or sinus node dysfunction (sinus bradycardia or sinus pauses).
- The patient has a significant contraindication precluding placement of conventional single-chamber ventricular pacemaker leads such as any of the following:
 - History of an endovascular or CIED infection or who are very high-risk for infection.
Leadless Cardiac Pacemakers

Policy # 00688
Original Effective Date: 01/01/2020
Current Effective Date: 11/14/2022

- Limited access for transvenous pacing given venous anomaly, occlusion of axillary veins or planned use of such veins for a semi-permanent catheter or current or planned use of an AV fistula for hemodialysis
- Presence of a bioprosthetic tricuspid valve

Practice Guidelines and Position Statements
Guidelines or position statements will be considered for inclusion in ‘Supplemental Information' if they were issued by, or jointly by, a US professional society, an international society with US representation, or National Institute for Health and Care Excellence (NICE). Priority will be given to guidelines that are informed by a systematic review, include strength of evidence ratings, and include a description of management of conflict of interest.

National Institute for Health and Care Excellence
In 2018, the NICE issued evidence-based recommendations on leadless cardiac pacemaker implantation for adults with bradyarrhythmias. The guidance states that the evidence "on the safety of leadless cardiac pacemaker implantation for bradyarrhythmias shows that there are serious but well-recognized complications. The evidence on efficacy is inadequate in quantity and quality:

- For people who can have conventional cardiac pacemaker implantation, leadless pacemakers should only be used in the context of research;
- For people in whom a conventional cardiac pacemaker implantation is contraindicated following a careful risk assessment by a multidisciplinary team, leadless cardiac pacemakers should only be used with special arrangements for clinical governance, consent and audit or research."

This guidance is scheduled for review in August 2021. An update has not been released as of April 2022.

Heart Rhythm Society
In 2020, the Heart Rhythm Society (HRS), along with the International Society for Cardiovascular Infectious Diseases (ISCVID) and several other Asian, European and Latin American societies, endorsed the European Heart Rhythm Association (EHRA) international consensus document on how to prevent, diagnose, and treat cardiac implantable electronic device infections. The consensus states that for patients at high risk of device-related infections, avoiding a transvenous system, and
Leadless Cardiac Pacemakers

Policy # 00688
Original Effective Date: 01/01/2020
Current Effective Date: 11/14/2022

implanting an epicardial system, may be preferential. It makes the following statements regarding leadless pacemakers:

- 'There is hope that ‘leadless’ pacemakers will be less prone to infection and can be used in a similar manner [as epicardial systems] in high-risk patients.'
- 'In selected high-risk patients, the risk of infection with leadless pacemakers appears low. The device also seems safe and feasible in patients with pre-existing CIED infection and after extraction of infected leads.'

U.S. Preventive Services Task Force Recommendations
Not applicable.

Medicare National Coverage
The Centers for Medicare & Medicaid (CMS) cover leadless pacemakers under coverage with evidence development criteria when procedures are performed in “prospective longitudinal studies” approved the U.S. FDA using “leadless pacemakers … in accordance with the FDA approved label for devices that have either:

- An associated ongoing FDA approved post-approval study; or
- Completed an FDA post-approval study.

Each study must be approved by CMS and as a fully-described, written part of its protocol, must address the following research questions:

- What are the peri-procedural and post-procedural complications of leadless pacemakers?
- What are the long term outcomes of leadless pacemakers?
- What are the effects of patient characteristics (age, gender, comorbidities) on the use and health effects of leadless pacemakers?”

The following 4 studies are currently approved by CMS:

1. Effectiveness of the EMPOWER™ Modular Pacing System and EMBLEM™ Subcutaneous ICD to Communicate Antitachycardia Pacing (NCT04798768); CMS approval date: 1/20/22;
2. The LEADLESS II IDE Study (Phase II): A Safety and Effectiveness Trial for a Leadless Pacemaker System (NCT04555945); CMS approval date: 3/16/21;
3. Longitudinal Coverage with Evidence Development Study on Micra AV Leadless Pacemakers (Micra AV CED) (NCT04235491); CMS approval date: 2/5/2020;
4. The Micra CED Study (NCT03039712); CMS approval date: 03/09/17; and

©2022 Blue Cross and Blue Shield of Louisiana

Blue Cross and Blue Shield of Louisiana is an independent licensee of the Blue Cross and Blue Shield Association and incorporated as Louisiana Health Service & Indemnity Company.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without permission from Blue Cross and Blue Shield of Louisiana.
Leadless Cardiac Pacemakers

Policy # 00688
Original Effective Date: 01/01/2020
Current Effective Date: 11/14/2022

5. Micra Transcatheter Pacing System Post-Approval Registry (NCT02536118); CMS approval date: 02/09/17.

Ongoing and Unpublished Clinical Trials
Some currently unpublished trials that might influence this review are listed in Table 2.

Table 2. Summary of Key Trials

<table>
<thead>
<tr>
<th>NCT No.</th>
<th>Trial Name</th>
<th>Planned Enrollment</th>
<th>Completion Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ongoing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCT02610673<sup>a</sup></td>
<td>WiCS-LV Post Market Surveillance Registry</td>
<td>100</td>
<td>Nov 2021 (unknown)</td>
</tr>
<tr>
<td>NCT02030418<sup>a</sup></td>
<td>Safety and Effectiveness Trial for the Nanostim Leadless Pacemaker (LEADLESS II)</td>
<td>526</td>
<td>Dec 2021 (ongoing)</td>
</tr>
<tr>
<td>NCT04559945<sup>a,b</sup></td>
<td>The LEADLESS II IDE Study (Phase II): A Safety and Effectiveness Trial for a Leadless Pacemaker System</td>
<td>615</td>
<td>Mar 2022 (recruiting)</td>
</tr>
<tr>
<td>NCT04253184<sup>a</sup></td>
<td>Micra AV Transcatheter Pacing System Post-Approval Registry (Micra AV PAS)</td>
<td>750</td>
<td>Apr 2024 (recruiting)</td>
</tr>
<tr>
<td>NCT04235491<sup>a,b</sup></td>
<td>Longitudinal Coverage With Evidence Development Study on Micra AV Leadless Pacemakers (Micra AV CED)</td>
<td>37,000</td>
<td>Jun 2025 (ongoing)</td>
</tr>
<tr>
<td>NCT04051814<sup>a</sup></td>
<td>A Retrospective Trial to Evaluate the Micra Pacemaker</td>
<td>500</td>
<td>May 2025 (recruiting)</td>
</tr>
<tr>
<td>NCT03039712<sup>a,b</sup></td>
<td>Longitudinal Coverage With Evidence Development Study on Micra Leadless Pacemakers (Micra CED)</td>
<td>37,000</td>
<td>Jun 2025 (ongoing)</td>
</tr>
<tr>
<td>NCT04926792<sup>a</sup></td>
<td>Taiwan Registry for Leadless Pacemaker</td>
<td>300</td>
<td>Jun 2025 (not yet recruiting)</td>
</tr>
<tr>
<td>NCT05252702<sup>a</sup></td>
<td>Aveir Dual-Chamber Leadless i2i IDE Study</td>
<td>550</td>
<td>Nov 2025 (recruiting)</td>
</tr>
<tr>
<td>NCT02536118<sup>a,b</sup></td>
<td>Micra Transcatheter Pacing System Post-Approval Registry</td>
<td>3100</td>
<td>Aug 2026 (ongoing)</td>
</tr>
</tbody>
</table>
Leadless Cardiac Pacemakers

Policy # 00688
Original Effective Date: 01/01/2020
Current Effective Date: 11/14/2022

| NCT04798768^{a,b} | Effectiveness of the EMPOWER™† Modular Pacing System and EMBLEM™‡ Subcutaneous ICD to Communicate Antitachycardia Pacing (MODULAR ATP) | 300 | Dec 2028 (ongoing) |

NCT: national clinical trial.
^a Denotes industry-sponsored or cosponsored trial.
^b Denotes CMS-approved study.

References

©2022 Blue Cross and Blue Shield of Louisiana

Blue Cross and Blue Shield of Louisiana is an independent licensee of the Blue Cross and Blue Shield Association and incorporated as Louisiana Health Service & Indemnity Company.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without permission from Blue Cross and Blue Shield of Louisiana.

Leadless Cardiac Pacemakers

Policy #: 00688
Original Effective Date: 01/01/2020
Current Effective Date: 11/14/2022

Leadless Cardiac Pacemakers

Policy # 00688
Original Effective Date: 01/01/2020
Current Effective Date: 11/14/2022

Policy History
Original Effective Date: 01/01/2020
Current Effective Date: 11/14/2022
10/03/2019 Medical Policy Committee review
10/01/2020 Medical Policy Committee review

©2022 Blue Cross and Blue Shield of Louisiana

Blue Cross and Blue Shield of Louisiana is an independent licensee of the Blue Cross and Blue Shield Association and incorporated as Louisiana Health Service & Indemnity Company.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without permission from Blue Cross and Blue Shield of Louisiana.
Leadless Cardiac Pacemakers

Policy # 00688
Original Effective Date: 01/01/2020
Current Effective Date: 11/14/2022

10/07/2020 Medical Policy Implementation Committee approval. No change to coverage.
10/07/2021 Medical Policy Committee review
10/13/2021 Medical Policy Implementation Committee approval. No change to coverage.
10/06/2022 Medical Policy Committee review
10/11/2022 Medical Policy Implementation Committee approval. No change to coverage.
06/06/2023 Coding update
Next Scheduled Review Date: 10/2023

Coding
The five character codes included in the Blue Cross Blue Shield of Louisiana Medical Policy
Coverage Guidelines are obtained from Current Procedural Terminology (CPT®), copyright 2021
by the American Medical Association (AMA). CPT is developed by the AMA as a listing of
descriptive terms and five character identifying codes and modifiers for reporting medical services
and procedures performed by physician.

The responsibility for the content of Blue Cross Blue Shield of Louisiana Medical Policy Coverage
Guidelines is with Blue Cross and Blue Shield of Louisiana and no endorsement by the AMA is
intended or should be implied. The AMA disclaims responsibility for any consequences or liability
attributable or related to any use, nonuse or interpretation of information contained in Blue Cross
Blue Shield of Louisiana Medical Policy Coverage Guidelines. Fee schedules, relative value units,
conversion factors and/or related components are not assigned by the AMA, are not part of CPT,
and the AMA is not recommending their use. The AMA does not directly or indirectly practice
medicine or dispense medical services. The AMA assumes no liability for data contained or not
contained herein. Any use of CPT outside of Blue Cross Blue Shield of Louisiana Medical Policy
Coverage Guidelines should refer to the most current Current Procedural Terminology which
contains the complete and most current listing of CPT codes and descriptive terms. Applicable
FARS/DFARS apply.

CPT is a registered trademark of the American Medical Association.
Leadless Cardiac Pacemakers

Policy # 00688
Original Effective Date: 01/01/2020
Current Effective Date: 11/14/2022

Codes used to identify services associated with this policy may include (but may not be limited to) the following:

<table>
<thead>
<tr>
<th>Code Type</th>
<th>Code</th>
<th>Add codes effective 07/01/2023: 0795T, 0796T, 0797T, 0798T, 0799T, 0800T, 0801T, 0802T, 0803T, 0804T</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPT</td>
<td>33274, 33275</td>
<td></td>
</tr>
</tbody>
</table>
| | | *Investigational – A medical treatment, procedure, drug, device, or biological product is Investigational if the effectiveness has not been clearly tested and it has not been incorporated into standard medical practice. Any determination we make that a medical treatment, procedure, drug, device, or biological product is Investigational will be based on a consideration of the following:
A. Whether the medical treatment, procedure, drug, device, or biological product can be lawfully marketed without approval of the U.S. Food and Drug Administration (FDA) and whether such approval has been granted at the time the medical treatment, procedure, drug, device, or biological product is sought to be furnished; or
B. Whether the medical treatment, procedure, drug, device, or biological product requires further studies or clinical trials to determine its maximum tolerated dose, toxicity, safety, effectiveness, or effectiveness as compared with the standard means of treatment or diagnosis, must improve health outcomes, according to the consensus of opinion among experts as shown by reliable evidence, including:
 1. Consultation with technology evaluation center(s);
 2. Credible scientific evidence published in peer-reviewed medical literature generally recognized by the relevant medical community; or
 3. Reference to federal regulations. |
| HCPCS | No codes | |
| ICD-10 Diagnosis | All related diagnoses | |

‡ Indicated trademarks are the registered trademarks of their respective owners.

NOTICE: If the Patient’s health insurance contract contains language that differs from the BCBSLA Medical Policy definition noted above, the definition in the health insurance contract will be relied upon for specific coverage determinations.
Leadless Cardiac Pacemakers

Policy # 00688
Original Effective Date: 01/01/2020
Current Effective Date: 11/14/2022

NOTICE: Medical Policies are scientific based opinions, provided solely for coverage and informational purposes. Medical Policies should not be construed to suggest that the Company recommends, advocates, requires, encourages, or discourages any particular treatment, procedure, or service, or any particular course of treatment, procedure, or service.