Germline Genetic Testing for Gene Variants Associated With Breast Cancer in Individuals at High Breast Cancer Risk (CHEK2, ATM, and BARD1)

Policy # 00504
Original Effective Date: 07/20/2016
Current Effective Date: 01/01/2023

Applies to all products administered or underwritten by Blue Cross and Blue Shield of Louisiana and its subsidiary, HMO Louisiana, Inc. (collectively referred to as the “Company”), unless otherwise provided in the applicable contract. Medical technology is constantly evolving, and we reserve the right to review and update Medical Policy periodically.

Note: Germline Genetic Testing for Hereditary Breast and or Ovarian Cancer is addressed separately in medical policy 00047.

Note: Magnetic Resonance Imaging for Detection and Diagnosis of Breast Cancer is addressed separately in medical policy 00084.

Note: Genetic Cancer Susceptibility Panels Using Next Generation Sequencing is addressed separately in medical policy 00382.

Note Genetic Testing for Lynch Syndrome and Other Inherited Colon is addressed separately in medical policy 00190.

Note Genetic Testing for Li-Fraumeni Syndrome is addressed separately in medical policy 00424.

Note Genetic Testing for PTEN Hamartoma Tumor Syndrome is addressed separately in medical policy 00417.

Services Are Considered Investigational
Coverage is not available for investigational medical treatments or procedures, drugs, devices or biological products.

Based on review of available data, the Company considers testing for CHEK2, ATM, and BARD1 variants in the assessment of breast cancer risk to be investigational.*
Germline Genetic Testing for Gene Variants Associated With Breast Cancer in Individuals at High Breast Cancer Risk (CHEK2, ATM, and BARD1)

Policy # 00504
Original Effective Date: 07/20/2016
Current Effective Date: 01/01/2023

Policy Guidelines
Criteria for Genetic Risk Evaluation
The National Comprehensive Cancer Network (NCCN) provides criteria for genetic risk evaluation for individuals with no history or breast cancer and for those with a breast cancer. Updated versions of the criteria are available on the NCCN website.

The recommended testing strategy for BRCA1, BRCA2, and PALB2 is described in policy 00047 (Germline Genetic Testing for Hereditary Breast and or Ovarian Cancer).

Genetic Counseling
Genetic counseling is primarily aimed at patients who are at risk for inherited disorders, and experts recommend formal genetic counseling in most cases when genetic testing for an inherited condition is considered. The interpretation of the results of genetic tests and the understanding of risk factors can be very difficult and complex. Therefore, genetic counseling will assist individuals in understanding the possible benefits and harms of genetic testing, including the possible impact of the information on the individual's family. Genetic counseling may alter the utilization of genetic testing substantially and may reduce inappropriate testing. Genetic counseling should be performed by an individual with experience and expertise in genetic medicine and genetic testing methods.

Background/Overview
Breast Cancer and Genetics
The National Cancer Institute estimated there would be 287,850 new cases of female breast cancer (FBC) and 2,710 cases of male breast cancer (MBC) diagnosed in 2022, with an expected 43,250 deaths due to FBC and 530 deaths due to MBC. Although non-Hispanic, white women are more likely to be diagnosed with breast cancer than non-Hispanic Black, Asian/Pacific Islander, American Indian/Alaska Native and Hispanic women, non-Hispanic Black women have the highest risk of breast cancer mortality. Breast cancers can be classified as sporadic, familial, or hereditary. Most breast cancers are sporadic (70% to 75%), occurring in individuals without a family history of the disease. Familial cancers (15% to 25%) aggregate within families but lack clearly discernable patterns of inheritance and are likely polygenic. Hereditary cancers have discernable inheritance patterns, often occur at younger ages, may be bilateral, and comprise between 5% and 10% of breast cancers. Most inherited autosomal dominant breast cancer can be attributed to
Germline Genetic Testing for Gene Variants Associated With Breast Cancer in Individuals at High Breast Cancer Risk (CHEK2, ATM, and BARD1)

Policy # 00504
Original Effective Date: 07/20/2016
Current Effective Date: 01/01/2023

the BRCA1 and BRCA2 variants. For women who inherit a pathogenic BRCA1 and BRCA2 variant, 45% to 72% will develop breast cancer by 70 to 80 years of age; risk in men with BRCA1 and BRCA2 variants is much lower (1% and 7%, respectively).3,4 Pathogenic variants in other highly penetrant genes (eg, TP53, CDH1, PTEN, STK11) contribute to a smaller number of cancers. CHEK2 and ATM are believed to be moderately penetrant and BARD1 has alternatively been described as moderate, low/moderate, and low penetrance.

Testing for BRCA1, BRCA2, and PALB2 is addressed in medical policy 00047.

Testing for mismatch repair genes linked to Lynch syndrome is addressed in medical policy 00190.

Testing for genes linked to Cowden/PTEN Hamartoma Tumor syndrome is addressed in medical policy 00417.

Testing for genes linked to Li-Fraumeni syndrome is addressed in medical policy 00424.

Penetrance of Pathogenic Variants
Penetrance is the risk conferred by a pathogenic variant or the proportion of individuals with the variant expected to develop cancer. Variant penetrance is considered high, moderate, or low according to lifetime risk: high (>50%), moderate (20% to 50%), and low (<20%) (corresponding relative risks of approximately ≥5, 1.5 to 5, and <1.5).9 Variants in only a few breast cancer-susceptibility genes (BRCA1 and BRCA2 [hereditary breast/ovarian cancer syndrome], TP53 [Li-Fraumeni syndrome], PTEN [Cowden syndrome], CDH1 [hereditary diffuse gastric cancer], and STK11 [Peutz-Jeghers syndrome]) are considered highly penetrant. For example, a woman with a BRCA1 or BRCA2 variant has a relative risk of 11 to 12 compared with the general population. Penetrance can be modified by environmental factors and by family history, which is a particularly important modifier for low and moderate penetrance genes. Moreover, specific pathogenic variants within a gene may confer somewhat different risks.

Determining Variant Pathogenicity
Determining the pathogenicity of variants in a more commonly detected cancer susceptibility gene (eg, founder sequence mutations) is generally straightforward because associations are repeatedly observed. For uncommonly identified variants, such as those found in a few individuals or families,
Germline Genetic Testing for Gene Variants Associated With Breast Cancer in Individuals at High Breast Cancer Risk (CHEK2, ATM, and BARD1)

Policy # 00504
Original Effective Date: 07/20/2016
Current Effective Date: 01/01/2023

defining pathogenicity can be more difficult. For example, predicting the pathogenicity of previously unidentified variants typically requires in silico (computational) analysis predicting protein structure/function, evolutionary conservation, and splice site prediction. The approach to defining pathogenicity is clearly outlined in standards and reporting guidelines. Still, distinctions between a variant of uncertain significance and a pathogenic one from different laboratories may not always be identical.

Genes Associated With a Moderate Penetrance of Breast Cancer

CHEK2 Gene
The CHEK2 (checkpoint kinase 2) gene is activated in response to DNA double-strand breakage and plays a role in cell-cycle control, DNA repair, and apoptosis.

In 2002, a single recurrent truncating variant in the CHEK2 gene (c.1100delC) was first reported as a cause of breast cancer, and studies have since confirmed this. The incidence of CHEK2 variants varies widely among populations. It is most prevalent in Eastern and Northern Europe, where the population frequency of the c.1100delC allele ranges from 0.5% to 1.4%; the allele is less frequent in North America and virtually absent in Spain and India. When compared with non-Hispanic, white individuals, prevalence appears to be lower in Black (odds ratio [OR] 0.17; 95% CI, 0.07 to 0.33), Asian (OR 0.14; 95% CI, 0.04 to 0.34), and Hispanic (OR 0.36; 95% CI, 0.18 to 0.62) individuals.

Although most data for truncating CHEK2 variants are limited to the c.1100delC allele, 3 other founder mutations of CHEK2 (IVS2+1G>A, del5395, I157T) have been associated with breast cancer in Eastern Europe. Both IVS2+1G>A and del5395 are protein-truncating variants, and I157T is a missense variant. The truncating variants are associated with breast cancer in the Slavic populations of Poland, Belarus, Russia, and the Czech Republic. The I157T variant has a wider geographic distribution and has been reported to be associated with breast cancer in Poland, Finland, Germany, and Belarus.

ATM Gene
ATM (ataxia-telangiectasia mutated), located on chromosome 11q22.3, is associated with the autosomal recessive condition ataxia-telangiectasia syndrome. This condition is characterized by progressive cerebellar ataxia with onset between the ages of 1 and 4 years, telangiectasias of the
Germline Genetic Testing for Gene Variants Associated With Breast Cancer in Individuals at High Breast Cancer Risk (CHEK2, ATM, and BARD1)

Policy # 00504
Original Effective Date: 07/20/2016
Current Effective Date: 01/01/2023

conjunctivae, oculomotor apraxia, immune defects, and cancer predisposition. Female ATM heterozygotes carriers have a risk of breast cancer about twice as high as that of the general population; however, they do not appear to have an elevated ovarian cancer risk.

BARD1 Gene
The BARD1 (BRCA1-associated RING [Really Interesting New Gene] domain) gene is located on chromosome 2 (sequence 2q34-q35). BARD1 encodes a protein which interacts with the N-terminal region of BRCA1, and BARD1 and BRCA1 can form a heterodimer by their N-terminal RING finger domains which form a stable complex. BARD1 variants have been associated with an increased risk of estrogen-receptor (ER) negative breast cancer, triple-negative breast cancer, and with breast cancer at a younger age (under age 50 years) in some studies, but do not appear to increase risk of ovarian cancer.

Identifying Individuals at Risk of an Inherited Susceptibility to Breast Cancer
Breast cancer risk can be affected by genetic and nongenetic factors. The risk is increased in women experiencing an earlier age at menarche, nulliparity, late age of first pregnancy, fewer births, late menopause, proliferative breast disease, menopausal hormone therapy, alcohol, obesity, inactivity, and radiation. A family history of breast cancer confers between a 2- and 4-fold increased risk varying by several factors: the number and closeness of affected relatives, age at which cancers developed, whether breast cancers were bilateral and if other cancers occurred (eg, ovarian). In men, family history is associated with increased risk of breast cancer, along with being older than 65 years, health conditions that result in elevated estrogen levels, and lifestyle factors (eg, obesity). For a woman without breast cancer, the probability of detecting a pathogenic variant can be estimated from a detailed multigenerational pedigree (eg, Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm), screening tools (eg, BRCAPRO, Ontario Family History Assessment Tool, Manchester Scoring System, Referral Screening Tool, Pedigree Assessment Tool, Family History Screen), or by referring to guidelines that define specific family history criteria (see Supplemental Information section on Practice Guidelines and Position Statements). For women with breast cancer, family history also affects the likelihood of carrying a pathogenic variant.

Variant Interpretation
Valid variant classification is required to assess penetrance and is of particular concern for low prevalence variants. While there are guidelines for variant classification, the consistency of
Germline Genetic Testing for Gene Variants Associated With Breast Cancer in Individuals at High Breast Cancer Risk (CHEK2, ATM, and BARD1)

Policy # 00504
Original Effective Date: 07/20/2016
Current Effective Date: 01/01/2023

Interpretation among laboratories is of interest. Balmaña et al (2016) examined the agreement in variant classification by different laboratories from tests for inherited cancer susceptibility from individuals undergoing panel testing. The Prospective Registry of Multiplex Testing is a volunteer sample of patients invited to participate when test results were provided to patients from participating laboratories. From 518 participants, 603 variants were interpreted by multiple laboratories and/or found in ClinVar. Discrepancies were most common with CHEK2 and ATM. Given the nature of the sample, there was a significant potential for biased selection of women with either reported variants of uncertain significance or other uncertainty in interpretation. In addition, discrepancies were confined to missense variants. It is therefore difficult to draw conclusions concerning the frequency of discrepant conclusions among all tested women.

FDA or Other Governmental Regulatory Approval

U.S. Food and Drug Administration (FDA)
Clinical laboratories may develop and validate tests in-house and market them as a laboratory service; laboratory-developed tests must meet the general regulatory standards of the Clinical Laboratory Improvement Amendments. CHEK2, ATM, and BARD1 testing are available under the auspices of the Clinical Laboratory Improvement Amendments. Laboratories offering to test and voluntarily listing is available through the National Center for Biotechnology Genetic Testing Registry. Laboratories that offer laboratory-developed tests must be licensed by the Clinical Laboratory Improvement Amendments for high-complexity testing. To date, the U.S FDA has chosen not to require any regulatory review of this test.

Customized next-generation sequencing panels provide simultaneous analysis of multiple cancer predisposition genes, and typically include both moderate- and high-penetrant genes.

Rationale/Source

This medical policy was developed through consideration of peer-reviewed medical literature generally recognized by the relevant medical community, U.S. Food and Drug Administration approval status, nationally accepted standards of medical practice and accepted standards of medical practice in this community, technology evaluation centers, reference to federal regulations, other plan medical policies, and accredited national guidelines.
Germline Genetic Testing for Gene Variants Associated With Breast Cancer in Individuals at High Breast Cancer Risk (CHEK2, ATM, and BARD1)

Policy # 00504
Original Effective Date: 07/20/2016
Current Effective Date: 01/01/2023

It is estimated that 3% to 5% of women presenting for assessment for hereditary breast/ovarian cancer risk have a variant in a gene that moderately increases the risk of cancer. CHEK2, ATM, and BARD1 variants are considered to be of moderate penetrance. Female carriers of CHEK2, ATM and BARD1 have an approximately 2- to 4-fold increased risk of developing breast cancer compared with the general population. Risk estimates may be higher in patients with a family history of breast cancer or a family history of a specific variant.

Germline genetic testing for BRCA1, BRCA2, and PALB2 is addressed separately in medical policy 00047.

Summary of Evidence
For individuals with risk of HBOC who receive genetic testing for a CHEK2 variant, the evidence includes studies of variant prevalence and studies of breast cancer risk. Relevant outcomes are OS, disease-specific survival, and test validity. The available studies on clinical validity have demonstrated that CHEK2 variants are of moderate penetrance, and confer a risk of breast cancer 2 to 4 times that of the general population. Direct evidence for the clinical utility of genetic testing for CHEK2 variants in individuals with risk of HBOC was not identified. It is unclear the RR associated with the moderate penetrance variants would increase risk enough beyond that already conferred by familial risk to change screening behavior. In contrast to high-penetrance variants, there is unlikely to be a similar benefit-to-risk calculus for risk-reducing mastectomy in women with a moderate penetrance variant such as CHEK2. The evidence is insufficient to determine that the technology results in an improvement in the net health outcome.

For individuals with risk of HBOC who receive genetic testing for an ATM variant, the evidence includes studies of variant prevalence and studies of breast cancer risk. Relevant outcomes are OS, disease-specific survival, and test validity. The available studies on clinical validity have demonstrated that ATM variants are of moderate penetrance; moreover, ATM variants confer a risk of breast cancer 2 to 4 times that of the general population. Direct evidence for the clinical utility of genetic testing for ATM variants in individuals with risk of HBOC was not identified. It is unclear that the RR associated with the moderate penetrance variants would increase risk enough beyond that already conferred by familial risk to change screening behavior. In contrast to high-penetrance variants, there is unlikely to be a similar benefit-to-risk calculus for preventive interventions in
women with a moderate penetrance variant such as \textit{ATM}. The evidence is insufficient to determine that the technology results in an improvement in the net health outcome.

For individuals with risk of HBOC who receive genetic testing for a \textit{BARD1} variant, the evidence includes studies of variant prevalence and studies of breast cancer risk. Relevant outcomes are OS, disease-specific survival, and test validity. The available studies on clinical validity have demonstrated that \textit{BARD1} variants are of low to moderate penetrance; \textit{BARD1} variants confer a risk of breast cancer about 2 to 3 times that of the general population. Direct evidence for the clinical utility of genetic testing for \textit{BARD1} variants in individuals with risk of HBOC was not identified. It is unclear that the RR associated with the low to moderate penetrance variants would increase risk enough beyond that already conferred by familial risk to change screening behavior. In contrast to high-penetrance variants, there is unlikely to be a similar benefit-to-risk calculus for preventive interventions in women with a low to moderate penetrance variant such as \textit{BARD1}. The evidence is insufficient to determine that the technology results in an improvement in the net health outcome.

Supplemental Information

Clinical Input From Physician Specialty Societies and Academic Medical Centers

While the various physician specialty societies and academic medical centers may collaborate with and make recommendations during this process, through the provision of appropriate reviewers, input received does not represent an endorsement or position statement by the physician specialty societies or academic medical centers, unless otherwise noted.

In response to requests, input was received from 5 specialty societies and 2 academic medical centers (total of 7 reviewers) while this policy was under review in 2014. The input was limited on whether \textit{PALB2} testing to estimate the risk of developing breast cancer should be medically necessary, and whether testing results alter patient management. Reviewer input on both questions was mixed.

Practice Guidelines and Position Statements

Guidelines or position statements will be considered for inclusion in ‘Supplemental Information' if they were issued by, or jointly by, a US professional society, an international society with US representation, or National Institute for Health and Care Excellence (NICE). Priority will be given...
Germline Genetic Testing for Gene Variants Associated With Breast Cancer in Individuals at High Breast Cancer Risk (CHEK2, ATM, and BARD1)

Policy # 00504
Original Effective Date: 07/20/2016
Current Effective Date: 01/01/2023

to guidelines that are informed by a systematic review, include strength of evidence ratings, and include a description of management of conflict of interest.

American College of Radiology
The American College of Radiology (ACR) has established Appropriateness Criteria for breast cancer screening (Table 1). This includes high-risk women with a BRCA gene mutation and their untested first-degree relatives, women with a history of chest irradiation between 10 to 30 years of age, and women with 20% or greater lifetime risk of breast cancer as follows:

Table 1. American College of Radiology Appropriateness Criteria for Breast Cancer Screening in High-Risk Women

<table>
<thead>
<tr>
<th>Screening Procedure</th>
<th>Appropriateness Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mammography</td>
<td>Usually appropriate</td>
</tr>
<tr>
<td>DBT</td>
<td>Usually appropriate</td>
</tr>
<tr>
<td>Breast MRI without and with IV contrast</td>
<td>May be appropriate</td>
</tr>
<tr>
<td>Breast US</td>
<td>May be appropriate</td>
</tr>
<tr>
<td>FDG-PEM</td>
<td>Usually not appropriate</td>
</tr>
<tr>
<td>Sestamibi MBI</td>
<td>Usually not appropriate</td>
</tr>
<tr>
<td>Breast MRI without IV contrast</td>
<td>Usually not appropriate</td>
</tr>
</tbody>
</table>

DBT: digital breast tomosynthesis; FDG-PEM: flurodeoxyglucose positron emission mammography; IV: intravenous; MBI: molecular breast imaging; MRI: magnetic resonance imaging; US: ultrasound.

Specific recommendations for CHEK2, ATM and BARD1 variant carriers are not available.

American Society of Breast Surgeons
A consensus guideline on genetic testing for hereditary breast cancer was updated in February 2019. Guidelines state that genetic testing should be made available to all individuals with a personal history of breast cancer and that such testing should include BRCA1/BRCA2 and PALB2, with other
Germline Genetic Testing for Gene Variants Associated With Breast Cancer in Individuals at High Breast Cancer Risk (CHEK2, ATM, and BARD1)

Policy # 00504
Original Effective Date: 07/20/2016
Current Effective Date: 01/01/2023

genes as appropriate for the clinical scenario and patient family history. Furthermore, individuals who had previous genetic testing may benefit from updated testing. Finally, genetic testing should be made available to individuals without a personal history of breast cancer when they meet National Comprehensive Cancer Network (NCCN) guideline criteria. The guidelines also note that variants of uncertain significance are not clinically actionable.

For individuals with mutations in ATM and CHEK2, enhanced screening is recommended, however, the data are not sufficient to support risk-reducing mastectomy in the absence of other factors such as strong family history. For individuals with BARD1 mutations, evidence is insufficient to support change in breast cancer risk management based on the presence of a mutation alone.

National Comprehensive Cancer Network
The NCCN (v.2.2022) guidelines on genetic/familial high-risk assessment for breast and ovarian cancer review single-gene tests for CHEK2, ATM, and BARD1. The guidelines state that for those that meet hereditary cancer testing criteria, testing for a specific familial pathogenic/likely pathogenic variant may be recommended for appropriate genes. For individuals who meet criteria with no known familial variants, comprehensive testing of a multigene panel may be considered. This testing may consider a number of genes, including but not limited to CHEK2, ATM, and BARD1. However, the inclusion of certain genes in the guideline does not imply the endorsement "for or against multigene testing for moderate-penetrance genes" and there are limited data on the degree of cancer risk associated with some genes in multigene panels. Testing an affected family member first has the highest likelihood of a positive result. The guidelines state that the panel recommends an annual mammogram for women with CHEK2, ATM, or BARD1 mutations beginning at age 40, with consideration of annual breast magnetic resonance imaging. The guidelines also state there is insufficient evidence to draw conclusions on risk-reducing mastectomy in individuals with CHEK2, ATM, or BARD1 mutations and that patients should be managed based on family history.

The NCCN guidelines on breast cancer screening and diagnosis (v.1. 2022) recommend the following:
- Annual mammogram.
- Annual breast magnetic resonance imaging if the patient has >20% risk of breast cancer based on models largely dependent on family history.

©2022 Blue Cross and Blue Shield of Louisiana

Blue Cross and Blue Shield of Louisiana is an independent licensee of the Blue Cross and Blue Shield Association and incorporated as Louisiana Health Service & Indemnity Company.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without permission from Blue Cross and Blue Shield of Louisiana.
Germline Genetic Testing for Gene Variants Associated With Breast Cancer in Individuals at High Breast Cancer Risk (CHEK2, ATM, and BARD1)

Policy # 00504
Original Effective Date: 07/20/2016
Current Effective Date: 01/01/2023

- Consideration of a risk-reducing strategies based on family history.

U.S. Preventive Services Task Force Recommendations
No U.S. Preventive Services Task Force recommendations for CHEK2, ATM and BARD1 variant testing have been identified.

Medicare National Coverage
There is no national coverage determination. In the absence of a national coverage determination, coverage decisions are left to the discretion of local Medicare carriers.

Ongoing and Unpublished Clinical Trials
Some currently unpublished trials that might influence this review are listed in Table 2.

Table 2. Summary of Key Trials

<table>
<thead>
<tr>
<th>NCT No.</th>
<th>Trial Name</th>
<th>Planned Enrollment</th>
<th>Completion Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ongoing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCT02620852</td>
<td>Enabling a Paradigm Shift: A Preference-Tolerant RCT of Personalized vs. Annual Screening for Breast Cancer (Wisdom Study)</td>
<td>100,000</td>
<td>Mar 2025</td>
</tr>
<tr>
<td>Unknown</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCT03989258</td>
<td>Implementation of a Model for Personalized Risk-Based Breast Cancer Prevention and Screening</td>
<td>28,389</td>
<td>Dec 2020 (last updated June 2019)</td>
</tr>
</tbody>
</table>

NCT: national clinical trial.

References

©2022 Blue Cross and Blue Shield of Louisiana

Blue Cross and Blue Shield of Louisiana is an independent licensee of the Blue Cross and Blue Shield Association and incorporated as Louisiana Health Service & Indemnity Company.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without permission from Blue Cross and Blue Shield of Louisiana.
Germline Genetic Testing for Gene Variants Associated With Breast Cancer in Individuals at High Breast Cancer Risk (CHEK2, ATM, and BARD1)

Policy # 00504
Original Effective Date: 07/20/2016
Current Effective Date: 01/01/2023

©2022 Blue Cross and Blue Shield of Louisiana

Blue Cross and Blue Shield of Louisiana is an independent licensee of the Blue Cross and Blue Shield Association and incorporated as Louisiana Health Service & Indemnity Company.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without permission from Blue Cross and Blue Shield of Louisiana.
Germline Genetic Testing for Gene Variants Associated With Breast Cancer in Individuals at High Breast Cancer Risk (CHEK2, ATM, and BARD1)

Policy # 00504
Original Effective Date: 07/20/2016
Current Effective Date: 01/01/2023

©2022 Blue Cross and Blue Shield of Louisiana

Blue Cross and Blue Shield of Louisiana is an independent licensee of the Blue Cross and Blue Shield Association and incorporated as Louisiana Health Service & Indemnity Company.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without permission from Blue Cross and Blue Shield of Louisiana.
Germline Genetic Testing for Gene Variants Associated With Breast Cancer in Individuals at High Breast Cancer Risk (CHEK2, ATM, and BARD1)

Policy # 00504
Original Effective Date: 07/20/2016
Current Effective Date: 01/01/2023

Germline Genetic Testing for Gene Variants Associated With Breast Cancer in Individuals at High Breast Cancer Risk (CHEK2, ATM, and BARD1)

Policy # 00504
Original Effective Date: 07/20/2016
Current Effective Date: 01/01/2023

©2022 Blue Cross and Blue Shield of Louisiana

Blue Cross and Blue Shield of Louisiana is an independent licensee of the Blue Cross and Blue Shield Association and incorporated as Louisiana Health Service & Indemnity Company.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without permission from Blue Cross and Blue Shield of Louisiana.
Germline Genetic Testing for Gene Variants Associated With Breast Cancer in Individuals at High Breast Cancer Risk (CHEK2, ATM, and BARD1)

Policy # 00504
Original Effective Date: 07/20/2016
Current Effective Date: 01/01/2023

Policy History

Original Effective Date: 07/20/2016
Current Effective Date: 01/01/2023
06/30/2016 Medical Policy Committee review
07/20/2016 Medical Policy Implementation Committee approval. New Policy.
01/01/2017 Coding update: Removing ICD-9 Diagnosis codes
01/05/2017 Medical Policy Committee review
01/18/2017 Medical Policy Implementation Committee approval. Added coverage statement with criteria for PALB2 variants, added CHEK2 and ATM to the policy. Added policy guidelines section and updated rationale and references. Title change.
06/08/2017 Removed colons from NCCN guideline sections.
02/01/2018 Medical Policy Committee review
02/21/2018 Medical Policy Implementation Committee approval. No change to coverage.
02/07/2019 Medical Policy Committee review
02/20/2019 Medical Policy Implementation Committee approval. No change to coverage.
12/05/2019 Medical Policy Committee review
12/11/2019 Medical Policy Implementation Committee approval. No change to coverage.
Germline Genetic Testing for Gene Variants Associated With Breast Cancer in Individuals at High Breast Cancer Risk (CHEK2, ATM, and BARD1)

Policy # 00504
Original Effective Date: 07/20/2016
Current Effective Date: 01/01/2023

Coding update
12/03/2020 Medical Policy Committee review
12/09/2020 Medical Policy Implementation Committee approval. No change to coverage.
12/02/2021 Medical Policy Committee review
12/08/2021 Medical Policy Implementation Committee approval. No change to coverage. Title changed.
03/25/2022 Coding update
10/06/2022 Medical Policy Committee review
10/11/2022 Medical Policy Implementation Committee approval. Policy statement and corresponding evidence review for BARD1 added to policy. Title changed to "Germline Genetic Testing for Gene Variants Associated with Breast Cancer in Individuals at High Breast Cancer Risk (CHEK2, ATM and BARD1)." Policy statement and corresponding evidence review on PALB2 moved to another policy.

Next Scheduled Review Date: 10/2023

Coding

The five character codes included in the Blue Cross Blue Shield of Louisiana Medical Policy Coverage Guidelines are obtained from Current Procedural Terminology (CPT®), copyright 2021 by the American Medical Association (AMA). CPT is developed by the AMA as a listing of descriptive terms and five character identifying codes and modifiers for reporting medical services and procedures performed by physician.

The responsibility for the content of Blue Cross Blue Shield of Louisiana Medical Policy Coverage Guidelines is with Blue Cross and Blue Shield of Louisiana and no endorsement by the AMA is intended or should be implied. The AMA disclaims responsibility for any consequences or liability attributable or related to any use, nonuse or interpretation of information contained in Blue Cross Blue Shield of Louisiana Medical Policy Coverage Guidelines. Fee schedules, relative value units, conversion factors and/or related components are not assigned by the AMA, are not part of CPT, and the AMA is not recommending their use. The AMA does not directly or indirectly practice medicine or dispense medical services. The AMA assumes no liability for data contained or not contained herein. Any use of CPT outside of Blue Cross Blue Shield of Louisiana Medical Policy Coverage Guidelines should refer to the most current Current Procedural Terminology which

©2022 Blue Cross and Blue Shield of Louisiana

Blue Cross and Blue Shield of Louisiana is an independent licensee of the Blue Cross and Blue Shield Association and incorporated as Louisiana Health Service & Indemnity Company.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without permission from Blue Cross and Blue Shield of Louisiana.
Germline Genetic Testing for Gene Variants Associated With Breast Cancer in Individuals at High Breast Cancer Risk (CHEK2, ATM, and BARD1)

Policy # 00504
Original Effective Date: 07/20/2016
Current Effective Date: 01/01/2023

contains the complete and most current listing of CPT codes and descriptive terms. Applicable FARS/DFARS apply.

CPT is a registered trademark of the American Medical Association.

Codes used to identify services associated with this policy may include (but may not be limited to) the following:

<table>
<thead>
<tr>
<th>Code Type</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPT</td>
<td>0136U, 81408, 81479</td>
</tr>
<tr>
<td></td>
<td>Delete code effective 04/01/2022: 0137U</td>
</tr>
<tr>
<td></td>
<td>Delete codes effective 01/01/2023: 0129U, 81307, 81308, 81406</td>
</tr>
<tr>
<td>HCPCS</td>
<td>No codes</td>
</tr>
<tr>
<td>ICD-10 Diagnosis</td>
<td>C25.0-C25.9, C50.01-C50.929, Z15.01, Z80.0, Z80.3</td>
</tr>
</tbody>
</table>

*Investigational – A medical treatment, procedure, drug, device, or biological product is Investigational if the effectiveness has not been clearly tested and it has not been incorporated into standard medical practice. Any determination we make that a medical treatment, procedure, drug, device, or biological product is Investigational will be based on a consideration of the following:

A. Whether the medical treatment, procedure, drug, device, or biological product can be lawfully marketed without approval of the U.S. Food and Drug Administration (FDA) and whether such approval has been granted at the time the medical treatment, procedure, drug, device, or biological product is sought to be furnished; or

B. Whether the medical treatment, procedure, drug, device, or biological product requires further studies or clinical trials to determine its maximum tolerated dose, toxicity, safety, effectiveness, or effectiveness as compared with the standard means of treatment or diagnosis, must improve health outcomes, according to the consensus of opinion among experts as shown by reliable evidence, including:

1. Consultation with technology evaluation center(s);
2. Credible scientific evidence published in peer-reviewed medical literature generally recognized by the relevant medical community; or
3. Reference to federal regulations.
Germline Genetic Testing for Gene Variants Associated With Breast Cancer in Individuals at High Breast Cancer Risk (CHEK2, ATM, and BARD1)

Policy # 00504
Original Effective Date: 07/20/2016
Current Effective Date: 01/01/2023

‡ Indicated trademarks are the registered trademarks of their respective owners.

NOTICE: If the Patient’s health insurance contract contains language that differs from the BCBSLA Medical Policy definition noted above, the definition in the health insurance contract will be relied upon for specific coverage determinations.

NOTICE: Medical Policies are scientific based opinions, provided solely for coverage and informational purposes. Medical Policies should not be construed to suggest that the Company recommends, advocates, requires, encourages, or discourages any particular treatment, procedure, or service, or any particular course of treatment, procedure, or service.