Next-Generation Sequencing for the Assessment of Measurable Residual Disease

Policy # 00656
Original Effective Date: 12/19/2018
Current Effective Date: 01/01/2023

Applies to all products administered or underwritten by Blue Cross and Blue Shield of Louisiana and its subsidiary, HMO Louisiana, Inc. (collectively referred to as the “Company”), unless otherwise provided in the applicable contract. Medical technology is constantly evolving, and we reserve the right to review and update Medical Policy periodically.

When Services Are Eligible for Coverage
Coverage for eligible medical treatments or procedures, drugs, devices or biological products may be provided only if:

- Benefits are available in the member’s contract/certificate, and
- Medical necessity criteria and guidelines are met.

Based on review of available data, the Company may consider next-generation sequencing (e.g., clonoSEQ) to detect measurable residual disease (MRD) following treatment as an alternative to standard testing (e.g., flow cytometry or polymerase chain reaction) in patients with acute lymphoblastic leukemia (ALL), chronic lymphocytic leukemia (CLL), or multiple myeloma to be eligible for coverage.**

Services Are Considered Investigational
Coverage is not available for investigational medical treatments or procedures, drugs, devices or biological products.

Based on review of available data, the Company considers next-generation sequencing to detect MRD in all other situations to be investigational.*

Background/Overview
Disease

There are 3 main types of hematologic malignancies: lymphomas, leukemias, and myelomas. Lymphoma begins in lymph cells of the immune system, which originate in the bone marrow and collect in lymph nodes and other tissues. Leukemia is caused by the overproduction of abnormal white blood cells in the bone marrow, which leads to a decrease in the production of red blood cells and plasma cells. The most common forms of leukemia are acute lymphoblastic leukemia, chronic...
lymphocytic leukemia, acute myeloid leukemia, and chronic myeloid leukemia. Multiple myeloma (MM), also called plasma myeloma, is a malignancy of plasma cells in the bone marrow. The present evidence review will address B-cell acute lymphoblastic leukemia, chronic lymphocytic leukemia, and multiple myeloma.

Treatment
Treatment depends on the type of malignancy and may include surgery, radiotherapy, chemotherapy, targeted therapy, plasmapheresis, biologic therapy, or hematopoietic cell transplant. Treatment of acute leukemias can lead to complete remission. Multiple myeloma and the chronic leukemias are treatable but generally incurable. Patients are typically followed by complete blood count and morphologic assessment of bone marrow. Complete hematologic response is defined as a bone marrow blast (immature cells) composition of less than 5% and hematologic recovery (normal neutrophil and platelet count) without the need for red blood cell transfusions.

Measurable Residual Disease
Relapse is believed to be due to residual clonal cells that remain following "complete response” after induction therapy but are below the limits of detection using conventional morphologic assessment. Residual clonal cells that can be detected in the bone marrow or blood are referred to as measurable residual disease (MRD), also known as minimal residual disease. MRD assessment is typically performed by flow cytometry or polymerase chain reaction (PCR) with primers for common variants. Flow cytometry or next generation flow cytometry evaluates blasts based on the expression of characteristic antigens, while PCR assesses specific chimeric fusion gene transcripts, gene variants, and overexpressed genes. PCR is sensitive for specific targets, but clonal evolution may occur between diagnosis, treatment, remission, and relapse that can affect the detection of MRD. Next-generation sequencing (NGS) has 10- to 100-fold greater sensitivity for detecting clonal cells, depending on the amount of DNA in the sample (see Table 1) and does not require patient-specific primers. For both PCR and NGS a baseline sample at the time of high disease load is needed to identify tumor-specific sequences. MRD with NGS is frequently used as a surrogate measure of treatment efficacy in drug development.

It is proposed that by using a highly sensitive and sequential MRD surveillance strategy, 1 could expect better outcomes when therapy is guided by molecular markers rather than hematologic relapse. However, some patients may have hematologic relapse despite no MRD, while others do not relapse despite residual mutation-bearing cells. Age-related clonal hematopoiesis, characterized
Next-Generation Sequencing for the Assessment of Measurable Residual Disease

Policy # 00656
Original Effective Date: 12/19/2018
Current Effective Date: 01/01/2023

by somatic variants in leukemia-associated genes with no associated hematologic disease, further complicates the assessment of MRD. One available test (ClonoSEQ) uses both PCR and NGS to detect clonal DNA in blood and bone marrow. ClonoSEQ Clonality (ID) PCR assessment is performed when there is a high disease load (e.g., initial diagnosis or relapse) to identify dominant or “trackable” sequences associated with the malignant clone. NGS is then used to monitor the presence and level of the associated sequences in follow-up samples. As shown in Table 1, NGS can detect clonal cells with greater sensitivity than either flow cytometry or PCR, although next-generation flow techniques have reached a detection limit of 1 in 10^{-5} cells, which is equal to PCR and approaches the limit of detection of NGS (see Table 1).

Table 1. Sensitivity of Methods for Detecting Minimal Residual Disease

<table>
<thead>
<tr>
<th>Technique</th>
<th>Sensitivity</th>
<th>Detection limit of blasts per 100,000 nucleated cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscopy (complete response)</td>
<td>10^{-4}</td>
<td>50,000</td>
</tr>
<tr>
<td>Multiparameter flow cytometry</td>
<td>10^{-4}</td>
<td>10</td>
</tr>
<tr>
<td>Next-generation flow cytometry</td>
<td>10^{-5}</td>
<td>1.0</td>
</tr>
<tr>
<td>Polymerase chain reaction</td>
<td>10^{-5}</td>
<td>1.0</td>
</tr>
<tr>
<td>Quantitative next-generation sequencing</td>
<td>10^{-5}</td>
<td>1.0</td>
</tr>
<tr>
<td>Next-generation sequencing</td>
<td>10^{-6}</td>
<td>0.1</td>
</tr>
</tbody>
</table>

FDA or Other Governmental Regulatory Approval

U.S. Food and Drug Administration (FDA)
The clonoSEQ® Minimal Residual Disease Test is offered by Adaptive Biotechnologies. clonoSEQ was previously marketed as clonoSIGHT™ (Sequenta), which was acquired by Adaptive Biotechnologies in 2015. clonoSIGHT was a commercialized version of the LymphoSIGHT platform by Sequenta for clinical use in MRD detection in lymphoid cancers. In September 2018, ClonoSEQ received marketing clearance from the U.S. FDA through the de novo classification process to detect MRD in patients with acute lymphoblastic leukemia or MM. In 2020, clonoSEQ

©2022 Blue Cross and Blue Shield of Louisiana

Blue Cross and Blue Shield of Louisiana is an independent licensee of the Blue Cross and Blue Shield Association and incorporated as Louisiana Health Service & Indemnity Company.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without permission from Blue Cross and Blue Shield of Louisiana.

Page 3 of 16
Next-Generation Sequencing for the Assessment of Measurable Residual Disease

Policy # 00656
Original Effective Date: 12/19/2018
Current Effective Date: 01/01/2023

received marketing clearance from the FDA to detect MRD in patients with chronic lymphocytic leukemia.

Rationale/Source
This medical policy was developed through consideration of peer-reviewed medical literature generally recognized by the relevant medical community, U.S. Food and Drug Administration approval status, nationally accepted standards of medical practice and accepted standards of medical practice in this community, technology evaluation centers, reference to federal regulations, other plan medical policies, and accredited national guidelines.

Description
Measurable residual disease (MRD), also known as minimal residual disease, refers to residual clonal cells in blood or bone marrow following treatment for hematologic malignancies. MRD is typically assessed by flow cytometry (FC) or polymerase chain reaction, which can detect 1 clonal cell in 100000 cells. It is proposed that next-generation sequencing (NGS), which can detect 1 residual clonal sequence out of 1,000,000 cells, will improve health outcomes in patients who have been treated for hematologic malignancies such as acute lymphoblastic leukemia (ALL), chronic lymphocytic leukemia (CLL), and multiple myeloma (MM).

Review of Evidence - Intro
For individuals with B-cell ALL (B-ALL) who are being monitored for residual disease following treatment who receive NGS for MRD at a threshold of 10^{-4}, the evidence includes a retrospective comparison of data from 2 earlier trials by the Children's Oncology Group. Relevant outcomes are overall survival (OS), disease-specific survival, test validity, change in disease status, quality of life (QOL), and treatment-related morbidity. Comparison of NGS and the established standard of flow cytometry (FC) showed good concordance when the same threshold (10^{-4}) was used for both NGS and FC. OS in pediatric patients with MRD positivity was significantly lower than in pediatric patients who were MRD negative at this threshold. The relatively small subset of patients who were discordant for FC and NGS results had outcomes that were midway between patients who were concordant as MRD positive or MRD negative for both tests. As the vast majority of patients had concordant results for NGS and FC at a threshold of 10^{-4}, NGS can be considered an alternative to FC for monitoring MRD in patients with B-ALL. The evidence is sufficient to determine that the technology results in an improvement in the net health outcomes.

©2022 Blue Cross and Blue Shield of Louisiana

Blue Cross and Blue Shield of Louisiana is an independent licensee of the Blue Cross and Blue Shield Association and incorporated as Louisiana Health Service & Indemnity Company.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without permission from Blue Cross and Blue Shield of Louisiana.

Page 4 of 16
Next-Generation Sequencing for the Assessment of Measurable Residual Disease

Policy # 00656
Original Effective Date: 12/19/2018
Current Effective Date: 01/01/2023

For individuals with B-ALL who are being monitored for residual disease following treatment who receive NGS for MRD at a threshold of less than 10^{-4}, the evidence includes retrospective analysis of prognosis from the earlier Children's Oncology Group trials. Relevant outcomes are OS, disease-specific survival, test validity, change in disease status, QOL, and treatment-related morbidity. NGS can be more sensitive than FC to detect the presence of residual leukemic cells, but specificity may be decreased at the more sensitive thresholds resulting in potential harm from overtreatment. Further study is needed to clarify whether MRD at levels lower than 1 in 10000 cells represents clinically significant disease and if the more sensitive test can be used to risk-stratify patients with B-ALL. The evidence is insufficient to determine that the technology results in an improvement in the net health outcomes.

For individuals with CLL who are being monitored for residual disease following treatment who receive NGS for MRD at a threshold of 10^{-4}, the evidence includes analysis of samples from 2 clinical trials. Relevant outcomes are OS, disease-specific survival, test validity, change in disease status, quality of life (QOL), and treatment-related morbidity. These studies evaluated the association between the level of MRD detected by NGS in bone marrow or blood and progression-free survival in completed phase 2 and 3 trials. Both studies demonstrated an association between the level of MRD and PFS with lower risk of progression in patients who exhibit MRD negativity below 10^{-4} compared to patients who have detectable residual disease. The evidence is sufficient to determine that the technology results in an improvement in the net health outcomes.

For individuals with CLL who are being monitored for residual disease following treatment who receive NGS for MRD at a threshold of less than 10^{-4}, the evidence includes analysis of samples from 2 clinical trials. Relevant outcomes are OS, disease-specific survival, test validity, change in disease status, QOL, and treatment-related morbidity. NGS can be more sensitive than FC to detect the presence of residual leukemic cells, but it is not clear if prognosis is improved at the lower thresholds. Currently, no additional treatment is offered to eradicate low-level MRD ($<10^{-4}$) after first-line treatment of CLL. Further study is needed to clarify whether MRD at levels lower than 1 in 10000 cells represents clinically significant disease and if the more sensitive test can be used for prognosis in patients with CLL. The evidence is insufficient to determine that the technology results in an improvement in the net health outcomes.

For individuals with MM who have achieved a CR following treatment who receive NGS for MRD at a threshold of 10^{-5}, the evidence includes a retrospective comparison of NGS and FC data from...
Next-Generation Sequencing for the Assessment of Measurable Residual Disease

Policy # 00656
Original Effective Date: 12/19/2018
Current Effective Date: 01/01/2023

MM treatment trials and from a clinical series. Relevant outcomes are OS, disease-specific survival, test validity, change in disease status, QOL, and treatment-related morbidity. Concordance has been demonstrated between NGS and the established standard of FC at 10^{-4} as well as with next generation flow cytometry (NGF) at a threshold of 10^{-5}. PFS in patients with MRD positivity is significantly shorter than in patients who are MRD negative at these thresholds. The relatively small subset of patients who were discordant for FC and NGS results had outcomes that were, on average, midway between patients who were concordant as MRD positive or MRD negative for both tests. Retrospective studies also indicate improved PFS when MRD is less than 10^{-5} compared to patients who have MRD greater than 10^{-5}. This threshold is consistent with current guideline-based care for prognostication using either NGF or NGS. The evidence is sufficient to determine that the technology results in an improvement in the net health outcome.

For individuals with MM who have achieved a complete response following treatment who receive NGS for MRD at a threshold of less than 10^{-5}, the evidence includes retrospective studies on prognosis. Relevant outcomes are OS, disease-specific survival, test validity, change in disease status, QOL, and treatment-related morbidity. There is some evidence that MRD may be a prognostic marker, but there is insufficient evidence on the number of false positives in patients with CR at the more sensitive threshold provided by NGS for prognostication or to guide therapy. A chain of evidence regarding management changes based on the assessment of MRD with NGS to detect 1 malignant clonal sequence out of 1,000,000 cells cannot be completed. Direct evidence from randomized controlled trials is needed to evaluate whether patient outcomes are improved by changes in postinduction care (eg, continuing or discontinuing therapy, avoiding unnecessary adverse events) following NGS assessment of residual disease at a threshold lower than 10^{-5}. Several trials that will test the effectiveness of NGS to guide therapy in MM are ongoing. The evidence is insufficient to determine that the technology results in an improvement in the net health outcomes.

Supplemental Information
Practice Guidelines and Position Statements

International Myeloma Working Group
The International Myeloma Working Group developed consensus criteria for response and minimal residual disease (MRD) assessment in multiple myeloma (Table 2).
Next-Generation Sequencing for the Assessment of Measurable Residual Disease

Policy # 00656
Original Effective Date: 12/19/2018
Current Effective Date: 01/01/2023

Table 2 IMWG Criteria

| Standard Response Criteria | "Negative immunofixation on the serum and urine and disappearance of any soft tissue plasmacytomas and <5% plasma cells in bone marrow aspirates"
| Stringent complete response | "Complete response as defined below plus normal FLC ratio** and absence of clonal cells in bone marrow biopsy by immunohistochemistry (κ/λ ratio ≤4:1 or ≥1:2 for κ and λ patients, respectively, after counting ≥100 plasma cells)"
| MRD Response Criteria (requires a complete response) | Absence of clonal plasma cells by NGS using the LymphoSIGHT platform (or validated equivalent) with a minimum sensitivity of 1 in 10⁵ nucleated cells
| Imaging plus MRD-negative | MRD negativity by NGF or NGS plus imaging criteria
| Sustained MRD-negative | MRD negativity by NGF or NGS, and by imaging, at a minimum of 1 year apart.

FLC: free light chain; IMWG: International Myeloma Working Group; MRD: minimal residual disease; NGF: next-generation flow; NGS: next-generation sequencing.

International Workshop on Chronic Lymphocytic Leukemia

The 2018 guidelines from the International Workshop on Chronic Lymphocytic Leukemia have the following recommendations regarding the assessment of MRD:

"The complete eradication of the leukemia is a desired end point. Use of sensitive multicolor flow cytometry, PCR, or next generation sequencing can detect MRD in many patients who achieved a complete clinical response. Prospective clinical trials have provided substantial evidence that therapies that are able to eradicate MRD usually result in an improved clinical outcome. The
Next-Generation Sequencing for the Assessment of Measurable Residual Disease

Policy # 00656
Original Effective Date: 12/19/2018
Current Effective Date: 01/01/2023

Techniques for assessing MRD have undergone a critical evaluation and have become well standardized. Six-color flow cytometry (MRD flow), allele-specific oligonucleotide PCR, or high-throughput sequencing using the ClonoSEQ assay are reliably sensitive down to a level of 1 CLL cell in 10,000 leukocytes. Refinement and harmonization of these technologies has established that a typical flow cytometry–based assay comprises a core panel of 6 markers (ie, CD19, CD20, CD5, CD43, CD79b, and CD81). As such, patients will be defined as having undetectable MRD (MRD-neg) remission if they have blood or marrow with 1 CLL cell per 10,000 leukocytes."

The National Comprehensive Cancer Network
The National Comprehensive Cancer Network has published guidelines of relevance to this review (see Table 3).

Table 3. Recommendations on Assessing Measurable Residual Disease

<table>
<thead>
<tr>
<th>Guideline</th>
<th>Version</th>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute lymphoblastic leukemia</td>
<td>2.2021</td>
<td>Risk stratification after treatment induction by MRD positivity. MRD in ALL refers to the presence of leukemic cells below the threshold of detection by conventional morphologic methods. The most frequently employed methods for MRD assessment are FC, RQ-PCR, and NGS. The</td>
</tr>
</tbody>
</table>
Next-Generation Sequencing for the Assessment of Measurable Residual Disease

Policy # 00656
Original Effective Date: 12/19/2018
Current Effective Date: 01/01/2023

<table>
<thead>
<tr>
<th>Guideline</th>
<th>Version</th>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chronic lymphocytic leukemia/small lymphocytic lymphoma</td>
<td>1.2022</td>
<td>Evidence from clinical trials suggests that undetectable MRD in the peripheral blood after the end of treatment is an important predictor of treatment efficacy. MRD evaluation should be performed using an assay with a sensitivity of 10^{-4} according to the standardized ERIC method or standardized NGS method.</td>
</tr>
<tr>
<td>Multiple myeloma</td>
<td>3.2022</td>
<td>Bone marrow aspirate with multiparameter flow cytometry is to be used as clinically indicated following</td>
</tr>
</tbody>
</table>
Next-Generation Sequencing for the Assessment of Measurable Residual Disease

Policy # 00656
Original Effective Date: 12/19/2018
Current Effective Date: 01/01/2023

<table>
<thead>
<tr>
<th>Guideline</th>
<th>Version</th>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>treatment. MRD tests should be initiated only at the time of suspected CR and can be assessed for prognostication after a shared decision with the patient. MRD criteria include NGF with the EuroFlow procedure or NGS with a sensitivity of 10^{-5}.</td>
</tr>
</tbody>
</table>

ALL: acute lymphoblastic leukemia, CR: complete response; ERIC: European Research Initiative on CLL; FC: flow cytometry; MRD: measurable residual disease; NGF: next generation flow; NGS: next-generation sequencing; RQ-PCR: real-time quantitative polymerase chain reaction.

U.S. Preventive Services Task Force Recommendations
Not applicable.

Medicare National Coverage
Molecular Diagnostic Services Program has determined that ClonoSEQ Assay testing is reasonable and necessary when performed on bone marrow specimens in patients with B-Cell ALL, CLL or multiple myeloma. Medicare will pay for a single episode of testing using ClonoSEQ for a patient with ALL or multiple myeloma when ClonoSEQ is being used according to its U.S. Food and Drug Administration cleared indications and clinical guidelines. An episode of testing will typically require a baseline assay and 3 follow-up assays.
Ongoing and Unpublished Clinical Trials
Some currently ongoing and unpublished trials that might influence this review are listed in Table 4.

Table 20. Summary of Key Trials

<table>
<thead>
<tr>
<th>NCT No.</th>
<th>Trial Name</th>
<th>Planned Enrollment</th>
<th>Completion Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ongoing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCT02627261</td>
<td>Comparison of Three Methods to Evaluate Residual Disease in Multiple Myeloma</td>
<td>100</td>
<td>May 2022</td>
</tr>
<tr>
<td>NCT04545333a</td>
<td>Real World Observational Study Using clonoSEQ® Next Generation Sequencing in Hematologic Malignancies: The 'Watch' Registry</td>
<td>528</td>
<td>Apr 2024</td>
</tr>
<tr>
<td>NCT03509961</td>
<td>A Phase II Pilot Trial to Estimate Survival After a Non-total Body Irradiation (TBI) Based Conditioning Regimen in Patients Diagnosed With Acute Lymphoblastic Leukemia (ALL) Who Are Pre-allogeneic Hematopoietic Cell Transplantation (HCT) Next-generation-sequence (NGS) Minimal Residual Disease (MRD) Negative (ENRAD)</td>
<td>95</td>
<td>Jul 2026</td>
</tr>
</tbody>
</table>

NCT: national clinical trial.
a Denotes industry-sponsored or cosponsored trial.

References
Next-Generation Sequencing for the Assessment of Measurable Residual Disease

Policy # 00656
Original Effective Date: 12/19/2018
Current Effective Date: 01/01/2023

©2022 Blue Cross and Blue Shield of Louisiana

Blue Cross and Blue Shield of Louisiana is an independent licensee of the Blue Cross and Blue Shield Association and incorporated as Louisiana Health Service & Indemnity Company.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without permission from Blue Cross and Blue Shield of Louisiana.
Next-Generation Sequencing for the Assessment of Measurable Residual Disease

Policy # 00656
Original Effective Date: 12/19/2018
Current Effective Date: 01/01/2023

Policy History
Original Effective Date: 12/19/2018
Current Effective Date: 01/01/2023
12/06/2018 Medical Policy Committee review
12/19/2018 Medical Policy Implementation Committee approval. New policy.
12/05/2019 Medical Policy Committee review
12/11/2019 Medical Policy Implementation Committee approval. No change to coverage.
12/03/2020 Medical Policy Committee review
12/09/2020 Medical Policy Implementation Committee approval. No change to coverage.
02/04/2021 Medical Policy Committee review
02/10/2021 Medical Policy Implementation Committee approval.
03/04/2021 Medical Policy Committee review

©2022 Blue Cross and Blue Shield of Louisiana

Blue Cross and Blue Shield of Louisiana is an independent licensee of the Blue Cross and Blue Shield Association and incorporated as Louisiana Health Service & Indemnity Company.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without permission from Blue Cross and Blue Shield of Louisiana.
Next-Generation Sequencing for the Assessment of Measurable Residual Disease

Policy # 00656
Original Effective Date: 12/19/2018
Current Effective Date: 01/01/2023

03/10/2021 Medical Policy Implementation Committee approval. Coverage statement went from Investigational to “Based on review of available data, the Company may consider next-generation sequencing (eg clonoSEQ) to detect measurable residual disease (MRD) as an alternative to standard testing (e.g., flow cytometry or polymerase chain reaction) in patients with acute lymphoblastic leukemia (ALL), chronic lymphocytic leukemia (CLL), or multiple myeloma to be eligible for coverage.” and “Based on review of available data, the Company considers next-generation sequencing to detect MRD in all other situations to be investigational.”

03/03/2022 Medical Policy Committee review
03/09/2022 Medical Policy Implementation Committee approval. No change to coverage.
11/03/2022 Medical Policy Committee review
11/09/2022 Medical Policy Implementation Committee approval. Senate bill review. Added the words “following treatment” in the coverage criteria statement.

03/19/2023 Coding Update

Next Scheduled Review Date: 11/2023

Coding
The five character codes included in the Blue Cross Blue Shield of Louisiana Medical Policy Coverage Guidelines are obtained from Current Procedural Terminology (CPT®), copyright 2021 by the American Medical Association (AMA). CPT is developed by the AMA as a listing of descriptive terms and five character identifying codes and modifiers for reporting medical services and procedures performed by physician.

The responsibility for the content of Blue Cross Blue Shield of Louisiana Medical Policy Coverage Guidelines is with Blue Cross and Blue Shield of Louisiana and no endorsement by the AMA is intended or should be implied. The AMA disclaims responsibility for any consequences or liability attributable or related to any use, nonuse or interpretation of information contained in Blue Cross Blue Shield of Louisiana Medical Policy Coverage Guidelines. Fee schedules, relative value units, conversion factors and/or related components are not assigned by the AMA, are not part of CPT, and the AMA is not recommending their use. The AMA does not directly or indirectly practice medicine or dispense medical services. The AMA assumes no liability for data contained or not contained herein. Any use of CPT outside of Blue Cross Blue Shield of Louisiana Medical Policy Coverage Guidelines should refer to the most current Current Procedural Terminology which

©2022 Blue Cross and Blue Shield of Louisiana

Blue Cross and Blue Shield of Louisiana is an independent licensee of the Blue Cross and Blue Shield Association and incorporated as Louisiana Health Service & Indemnity Company.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without permission from Blue Cross and Blue Shield of Louisiana.
Next-Generation Sequencing for the Assessment of Measurable Residual Disease

Policy # 00656
Original Effective Date: 12/19/2018
Current Effective Date: 01/01/2023

contains the complete and most current listing of CPT codes and descriptive terms. Applicable FARS/DFARS apply.

CPT is a registered trademark of the American Medical Association.

Codes used to identify services associated with this policy may include (but may not be limited to) the following:

<table>
<thead>
<tr>
<th>Code Type</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPT</td>
<td>0171U, 81479, 81599</td>
</tr>
<tr>
<td></td>
<td>Add codes effective 01/01/2023: 0306U, 0307U</td>
</tr>
<tr>
<td></td>
<td>Add codes effective 04/01/2023: 0364U</td>
</tr>
<tr>
<td>HCPCS</td>
<td>No codes</td>
</tr>
<tr>
<td>ICD-10 Diagnosis</td>
<td>C81.00-C96.9</td>
</tr>
</tbody>
</table>

*Investigational – A medical treatment, procedure, drug, device, or biological product is Investigational if the effectiveness has not been clearly tested and it has not been incorporated into standard medical practice. Any determination we make that a medical treatment, procedure, drug, device, or biological product is Investigational will be based on a consideration of the following:

A. Whether the medical treatment, procedure, drug, device, or biological product can be lawfully marketed without approval of the U.S. Food and Drug Administration (FDA) and whether such approval has been granted at the time the medical treatment, procedure, drug, device, or biological product is sought to be furnished; or

B. Whether the medical treatment, procedure, drug, device, or biological product requires further studies or clinical trials to determine its maximum tolerated dose, toxicity, safety, effectiveness, or effectiveness as compared with the standard means of treatment or diagnosis, must improve health outcomes, according to the consensus of opinion among experts as shown by reliable evidence, including:

1. Consultation with technology evaluation center(s);
2. Credible scientific evidence published in peer-reviewed medical literature generally recognized by the relevant medical community; or
3. Reference to federal regulations.
Next-Generation Sequencing for the Assessment of Measurable Residual Disease

Policy # 00656
Original Effective Date: 12/19/2018
Current Effective Date: 01/01/2023

**Medically Necessary (or “Medical Necessity”) - Health care services, treatment, procedures, equipment, drugs, devices, items or supplies that a Provider, exercising prudent clinical judgment, would provide to a patient for the purpose of preventing, evaluating, diagnosing or treating an illness, injury, disease or its symptoms, and that are:

A. In accordance with nationally accepted standards of medical practice;
B. Clinically appropriate, in terms of type, frequency, extent, level of care, site and duration, and considered effective for the patient's illness, injury or disease; and
C. Not primarily for the personal comfort or convenience of the patient, physician or other health care provider, and not more costly than an alternative service or sequence of services at least as likely to produce equivalent therapeutic or diagnostic results as to the diagnosis or treatment of that patient's illness, injury or disease.

For these purposes, “nationally accepted standards of medical practice” means standards that are based on credible scientific evidence published in peer-reviewed medical literature generally recognized by the relevant medical community, Physician Specialty Society recommendations and the views of Physicians practicing in relevant clinical areas and any other relevant factors.

‡ Indicated trademarks are the registered trademarks of their respective owners.

NOTICE: If the Patient’s health insurance contract contains language that differs from the BCBSLA Medical Policy definition noted above, the definition in the health insurance contract will be relied upon for specific coverage determinations.

NOTICE: Medical Policies are scientific based opinions, provided solely for coverage and informational purposes. Medical Policies should not be construed to suggest that the Company recommends, advocates, requires, encourages, or discourages any particular treatment, procedure, or service, or any particular course of treatment, procedure, or service.