Transcatheter Aortic Valve Implantation for Aortic Stenosis

Policy # 00406
Original Effective Date: 03/19/2014
Current Effective Date: 07/01/2023

Applies to all products administered or underwritten by Blue Cross and Blue Shield of Louisiana and its subsidiary, HMO Louisiana, Inc. (collectively referred to as the “Company”), unless otherwise provided in the applicable contract. Medical technology is constantly evolving, and we reserve the right to review and update Medical Policy periodically.

Note: Transcatheter Pulmonary Valve Implantation is addressed separately in medical policy 00576.

When Services Are Eligible for Coverage
Coverage for eligible medical treatments or procedures, drugs, devices or biological products may be provided only if:

• Benefits are available in the member’s contract/certificate, and
• Medical necessity criteria and guidelines are met.

Based on review of available data, the Company may consider transcatheter aortic valve replacement (TAVR) with an U.S. FDA-approved transcatheter heart valve system, performed via an approach consistent with the device’s FDA-approved labeling, for individuals with native valve aortic stenosis eligible for coverage.**

Patient Selection Criteria
Coverage eligibility will be met for transcatheter aortic valve replacement (TAVR), with an U.S. FDA-approved transcatheter heart valve system, performed via an approach consistent with the device’s FDA-approved labeling for individuals with native valve aortic stenosis when all of the following conditions are present:

• Severe aortic stenosis with a calcified aortic annulus; AND
• New York Heart Association (NYHA) heart failure Class II, III or IV symptoms; AND
• Left ventricular ejection fraction greater than 20%; AND
• Individual does not have unicuspid or bicuspid aortic valves

Based on review of available data, the Company may consider transcatheter aortic valve replacement (TAVR) with a transcatheter heart valve system approved for use for repair of a degenerated bioprosthetic valve (valve-in-valve) to be eligible for coverage.**
Transcatheter Aortic Valve Implantation for Aortic Stenosis

Policy # 00406
Original Effective Date: 03/19/2014
Current Effective Date: 07/01/2023

Patient Selection Criteria
Coverage eligibility will be met for transcatheter aortic valve replacement (TAVR) with a transcatheter heart valve system approved for use for repair of a degenerated bioprosthetic valve (valve-in-valve) when all of the following are present:

- Failure (stenosed, insufficient, or combined) of a surgical bioprosthetic aortic valve; AND
- NYHA heart failure class II, III or IV symptoms; AND
- Left ventricular ejection fraction greater than 20%; AND
- Individual is not an operable candidate for open surgery, as judged by at least 2 cardiovascular specialists (cardiologist and/or cardiac surgeon); or individual is an operable candidate but is at high risk for open surgery.

Note: The U.S. FDA definition of extreme risk or inoperable for open surgery is:
- Predicted risk of operative mortality and/or serious irreversible morbidity 50% or higher for open surgery.

The FDA definition of high risk for open surgery is:
- Society of Thoracic Surgeons predicted operative risk score of 8% or higher; or
- Judged by a heart team, which includes an experienced cardiac surgeon and a cardiologist, to have an expected mortality risk of 15% or higher for open surgery.

FDA definition of intermediate risk is:
- Society of Thoracic Surgeons predicted operative risk score of 3% to 7%.

Individuals with Society of Thoracic Surgeons predicted operative risk score of less than 3% or 4% are considered at low risk for open surgery.

For the use of the Sapien or CoreValve device, severe aortic stenosis is defined by the presence of one or more of the following criteria:
- An aortic valve area of less than or equal to 1 cm2
- An aortic valve area index of less than or equal to 0.6 cm2/m2
- A mean aortic valve gradient greater than or equal to 40 mm Hg
- A peak aortic-jet velocity greater than or equal to 4.0 m/s
Transcatheter Aortic Valve Implantation for Aortic Stenosis

Policy # 00406
Original Effective Date: 03/19/2014
Current Effective Date: 07/01/2023

When Services Are Considered Investigational

Coverage is not available for investigational medical treatments or procedures, drugs, devices or biological products.

Based on review of available data, the Company considers transcatheter aortic valve replacement (TAVR) for all other indications to be investigational.*

Based on review of available data, the Company considers the use of transcatheter aortic valve replacement (TAVR) when patient selection criteria are not met to be investigational.*

Based on review of available data, the Company considers the use of a cerebral embolic protection device (e.g., Sentinel) during transcatheter aortic valve replacement procedures to be investigational.*

Background/Overview

Aortic Stenosis

Aortic stenosis is defined as narrowing of the aortic valve opening, resulting in obstruction of blood flow from the left ventricle into the ascending aorta. Progressive calcification of the aortic valve is the most common etiology in North America and Europe, while rheumatic fever is the most common etiology in developing countries. Congenital abnormalities of the aortic valve, most commonly a bicuspid or unicuspid valve, increase the risk of aortic stenosis, but aortic stenosis can also occur in a normal aortic valve. Risk factors for calcification of a congenitally normal valve mirror those for atherosclerotic vascular disease, including advanced age, male gender, smoking, hypertension, and hyperlipidemia. Thus, the pathogenesis of calcific aortic stenosis is thought to be similar to that of atherosclerosis (ie, deposition of atherogenic lipids and infiltration of inflammatory cells, followed by progressive calcification).

The natural history of aortic stenosis involves a long asymptomatic period, with slowly progressive narrowing of the valve until the stenosis reaches the severe stage. At this time, symptoms of dyspnea, chest pain, and/or dizziness/syncope often occur, and the disorder progresses rapidly. Treatment of aortic stenosis is replacement of the diseased valve with a bioprosthetic or mechanical valve.
Disease Burden
Aortic stenosis is a relatively common disorder in elderly individuals and is the most common acquired valve disorder in the United States. Approximately 2% to 4% of people older than 65 years of age have evidence of significant aortic stenosis, increasing up to 8% of people by age 85 years. In the Helsinki Aging Study (1993), a population-based study of 501 individuals aged 75 to 86 years, the prevalence of severe aortic stenosis by echocardiography was estimated to be 2.9%. In the United States, more than 50,000 aortic valve replacements are performed annually due to severe aortic stenosis.

Aortic stenosis does not cause substantial morbidity or mortality when the disease is mild or moderate in severity. By the time it becomes severe, there is an untreated mortality rate of approximately 50% within 2 years. Open surgical repair is an effective treatment for reversing aortic stenosis, and artificial valves have demonstrated good durability for up to 20 years. However, these benefits are accompanied by perioperative mortality of approximately 3% to 4% and substantial morbidity, both of which increase with advancing age.

Unmet Needs
Many individuals with severe, symptomatic aortic stenosis are poor operative candidates. Approximately 30% of individuals presenting with severe aortic stenosis do not undergo open surgery due to factors such as advanced age, advanced left ventricular dysfunction, or multiple medical comorbidities. For individuals who are not surgical candidates, medical therapy can partially alleviate the symptoms of aortic stenosis but does not affect the underlying disease progression. Percutaneous balloon valvuloplasty can be performed, but this procedure has less than optimal outcomes. Balloon valvuloplasty can improve symptoms and increase flow across the stenotic valve but is associated with high rates of complications such as stroke, myocardial infarction, and aortic regurgitation. Also, restenosis can occur rapidly, and there is no improvement in mortality. As a result, there is a large unmet need for less invasive treatments for aortic stenosis in individuals at increased risk for open surgery.

Treatment
Transcatheter aortic valve implantation, also known as transcatheter aortic valve replacement, has been developed in response to this unmet need and was originally intended as an alternative for individuals for whom surgery was not an option due to prohibitive surgical risk or for individuals at high-risk for open surgery. The procedure is performed percutaneously, most often through the
Transcatheter Aortic Valve Implantation for Aortic Stenosis

Policy # 00406
Original Effective Date: 03/19/2014
Current Effective Date: 07/01/2023

Transfemoral artery approach. It can also be done through the subclavian artery approach and transapically using mediastinoscopy. Balloon valvuloplasty is first performed to open up the stenotic area. This is followed by passage of a bioprosthetic artificial valve across the native aortic valve. The valve is initially compressed to allow passage across the native valve and is then expanded and secured to the underlying aortic valve annulus. The procedure is performed on the beating heart without cardiopulmonary bypass.

FDA or Other Governmental Regulatory Approval
U.S. Food and Drug Administration (FDA)
Multiple manufacturers have transcatheter aortic valve devices with U.S. FDA approval. Regulatory status data for these devices are listed in Table 1.

Table 1. FDA Approved Transcatheter Aortic Valve Device Systems

<table>
<thead>
<tr>
<th>Device and Indication</th>
<th>Manufacturer</th>
<th>Date Cleared</th>
<th>PMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edwards SAPIEN Transcatheter Heart Valve System™‡</td>
<td>Edwards Lifesciences</td>
<td>11/11</td>
<td>P100041</td>
</tr>
<tr>
<td>• Severe native aortic valve stenosis determined to be inoperable for open aortic valve replacement (transfemoral approach)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Edwards SAPIEN™‡ Transcatheter Heart Valve, Model 9000TFX</td>
<td></td>
<td>10/12</td>
<td>P110021</td>
</tr>
<tr>
<td>• Expanded to include high-risk aortic stenosis (transapical approach)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Edwards SAPIEN XT Transcatheter Heart Valve (model 9300TFX) and accessories</td>
<td></td>
<td>07/14</td>
<td>P130009</td>
</tr>
</tbody>
</table>
Transcatheter Aortic Valve Implantation for Aortic Stenosis

Policy # 00406
Original Effective Date: 03/19/2014
Current Effective Date: 07/01/2023

- Severe native aortic valve stenosis at high or greater risk for open surgical therapy

- Expanded to include failure of a bioprosthetic valve with high or greater risk for open surgical therapy
 10/15 P130009/S034

- Expanded to include severe aortic stenosis with intermediate surgical risk
 08/16 P130009/S057

- SAPIEN 3 THV System, a design iteration
 - Severe aortic stenosis with high or greater risk for open surgical therapy
 06/15 P140031

- Expanded to include failure of a bioprosthetic valve with high or greater risk for open surgical therapy
 06/17 P140031/S028

- SAPIEN 3 Ultra THV System, a design iteration
 12/18 P140031

- Expanded to include severe aortic stenosis with low surgical risk
 08/19 P140031/S085

- Expanded to include failure of a bioprosthetic valve with high or greater risk for open surgical therapy
 09/20 P140031/S112

Note: In August 2019, FDA issued a recall for the Edwards SAPIEN 3 Ultra Transcatheter Heart Valve System (Recall event ID: 83293) due to "reports of burst balloons which have resulted in significant difficulty retrieving the device into the sheath and withdrawing the system from the patient during procedures".
Medtronic CoreValve System™‡

- Severe native aortic stenosis at extreme risk or inoperable for open surgical therapy

<table>
<thead>
<tr>
<th>Procedure/Device</th>
<th>Date</th>
<th>Approval Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medtronic CoreValve</td>
<td>01/14</td>
<td>P130021</td>
</tr>
</tbody>
</table>

- Expanded to include high-risk for open surgical therapy

<table>
<thead>
<tr>
<th>Procedure/Device</th>
<th>Date</th>
<th>Approval Code</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>06/16</td>
<td>P130021/S002</td>
</tr>
</tbody>
</table>

- Expanded to include intermediate risk for open surgical therapy

<table>
<thead>
<tr>
<th>Procedure/Device</th>
<th>Date</th>
<th>Approval Code</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>07/17</td>
<td>P130021/S033</td>
</tr>
</tbody>
</table>

- Medtronic CoreValve Evolut R System™‡ (design iteration for valve and accessories)

<table>
<thead>
<tr>
<th>Procedure/Device</th>
<th>Date</th>
<th>Approval Code</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>06/15</td>
<td>P130021/S014</td>
</tr>
</tbody>
</table>

- Expanded to include intermediate risk for open surgical therapy

<table>
<thead>
<tr>
<th>Procedure/Device</th>
<th>Date</th>
<th>Approval Code</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>07/17</td>
<td>P130021/S033</td>
</tr>
</tbody>
</table>

- Medtronic CoreValve Evolut PRO System™‡ (design iteration for valve and accessories, includes porcine pericardial tissue wrap)

<table>
<thead>
<tr>
<th>Procedure/Device</th>
<th>Date</th>
<th>Approval Code</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>03/17</td>
<td>P130021/S029</td>
</tr>
</tbody>
</table>

- Expanded to include intermediate risk for open surgical therapy

<table>
<thead>
<tr>
<th>Procedure/Device</th>
<th>Date</th>
<th>Approval Code</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>07/17</td>
<td>P130021/S033</td>
</tr>
</tbody>
</table>

- Expanded to include severe aortic stenosis with low surgical risk

<table>
<thead>
<tr>
<th>Procedure/Device</th>
<th>Date</th>
<th>Approval Code</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>08/19</td>
<td>P130021/S058</td>
</tr>
</tbody>
</table>

- Medtronic CoreValve Evolut PRO+ System™‡ (design iteration)

<table>
<thead>
<tr>
<th>Procedure/Device</th>
<th>Date</th>
<th>Approval Code</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>08/19</td>
<td>P130021/S059</td>
</tr>
</tbody>
</table>
Transcatheter Aortic Valve Implantation for Aortic Stenosis

Policy # 00406
Original Effective Date: 03/19/2014
Current Effective Date: 07/01/2023

- Medtronic Evolut™‡ FX System (design iteration)
- LOTUS Edge™‡ Valve System
 - Severe native aortic stenosis at high or greater risk for open surgical therapy
 - See Note

- Portico™‡ with FlexNav™‡
 - Severe native aortic stenosis at high or greater risk for open surgical therapy

<table>
<thead>
<tr>
<th>Valve System</th>
<th>Manufacturer</th>
<th>Date</th>
<th>Approval #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medtronic Evolut™‡ FX System</td>
<td></td>
<td>08/21</td>
<td>P130021/S091</td>
</tr>
<tr>
<td>LOTUS Edge™‡ Valve System</td>
<td>Boston Scientific Corporation</td>
<td>04/19</td>
<td>P180029</td>
</tr>
<tr>
<td>Portico™‡ with FlexNav™‡</td>
<td>Abbott Medical</td>
<td>09/21</td>
<td>P190023</td>
</tr>
</tbody>
</table>

Note: in January 2021, Boston Scientific Corporation announced a global, voluntary recall of all unused inventory of the LOTUS Edge™‡ Valve System due to complexities associated with the product delivery system. There are no safety concerns for patients who have the LOTUS Edge™‡ Valve System currently implanted. Boston Scientific has chosen to retire the entire LOTUS product platform immediately rather than develop and reintroduce an enhanced delivery system. All related commercial, clinical, research and development, and manufacturing activities will cease.

Other transcatheter aortic valve systems are under development. The following repositionable valve is under investigation:

- JenaValve™‡ (JenaValve Technology); designed for transapical placement. The FDA granted breakthrough designation to this device system in January 2020.

In June 2017, the Sentinel®‡ Cerebral Protection System (Boston Scientific; previously Claret Medical, Inc.) was granted a de novo classification by the FDA (DEN160043; class II; product code: PUM). The Sentinel system is a temporary catheter indicated for use as an embolic protection device to capture and remove thrombus/debris while performing transcatheter aortic valve replacement procedures. The diameters of the arteries at the site of filter placement should be between 9 mm to
Transcatheter Aortic Valve Implantation for Aortic Stenosis

Policy # 00406
Original Effective Date: 03/19/2014
Current Effective Date: 07/01/2023

15 mm for the brachiocephalic and 6.5 mm to 10 mm in the left common carotid. The new classification applies to this device and substantially equivalent devices of this generic type.

On August 3, 2021, the FDA Circulatory System Devices Panel of the Medical Devices Advisory Committee met to discuss and make recommendations on the 510(k) submission for the TriGUARD 3™† Cerebral Embolic Protection Device (Keystone Heart). With the Sentinel system serving as the predicate device, the panel expressed that the proposed indications for use of the TriGUARD 3 device were not supported by the safety and effectiveness data from the REFLECT II trial. Previously, the TriGUARD 3 device was granted Conformité Européene (CE) mark approval in Europe in March 2020.

Rationale/Source
This medical policy was developed through consideration of peer-reviewed medical literature generally recognized by the relevant medical community, U.S. Food and Drug Administration approval status, nationally accepted standards of medical practice and accepted standards of medical practice in this community, technology evaluation centers, reference to federal regulations, other plan medical policies, and accredited national guidelines.

Aortic stenosis is narrowing of the aortic valve opening, resulting in obstruction of blood flow from the left ventricle into the ascending aorta. Individuals with untreated, symptomatic severe aortic stenosis have a poor prognosis. Valve replacement is an effective treatment for severe aortic stenosis. Transcatheter aortic valve implantation (TAVI), also known as transcatheter aortic valve replacement (TAVR), is being evaluated as an alternative to open surgery for individuals with aortic stenosis and to nonsurgical therapy for individuals with a prohibitive risk for surgery.

Summary of Evidence
For individuals who have severe symptomatic aortic stenosis who are at prohibitive risk for open surgery who receive transcatheter aortic valve implantation (TAVI), the evidence includes a randomized controlled trial (RCT) comparing TAVI with medical management in individuals at prohibitive risk of surgery, a single-arm prospective trial, multiple case series, and multiple systematic reviews. Relevant outcomes are overall survival (OS), symptoms, morbid events, and treatment-related mortality and morbidity. For individuals who are not surgical candidates due to excessive surgical risk, the Placement of Aortic Transcatheter Valve Trial Edwards SAPIEN
Transcatheter Aortic Valve Implantation for Aortic Stenosis

Policy # 00406
Original Effective Date: 03/19/2014
Current Effective Date: 07/01/2023

Transcatheter Heart Valve (PARTNER B) trial reported on results for individuals treated with TAVI by the transfemoral approach compared with continued medical care with or without balloon valvuloplasty. There was a large decrease in mortality for the TAVI individuals at 1 year compared with medical care. This trial also reported improvements in other relevant clinical outcomes for the TAVI group. There was an increased risk of stroke and vascular complications in the TAVI group. Despite these concerns, the overall balance of benefits and risks from this trial indicate that health outcomes are improved. For individuals who are not surgical candidates, no randomized trials have compared the self-expandable valve with best medical therapy. However, results from the single-arm Core Valve Extreme Risk Pivotal Trial met trialists’ prespecified objective performance goal. The evidence is sufficient to determine that the technology results in an improvement in the net health outcome.

For individuals who have severe symptomatic aortic stenosis who are at high-risk for open surgery who receive TAVI, the evidence includes 2 RCTs comparing TAVI with surgical repair in individuals at high-risk for surgery and 1 RCT comparing 2 types of valves, multiple nonrandomized comparative studies, and systematic reviews of these studies. Relevant outcomes are OS, symptoms, morbid events, and treatment-related mortality and morbidity. For individuals who are high-risk for open surgery and are surgical candidates, the PARTNER A trial reported noninferiority for survival at 1 year for the balloon-expandable valve compared with open surgery. In this trial, TAVI individuals also had higher risks for stroke and vascular complications. Nonrandomized comparative studies of TAVI versus open surgery in high-risk individuals have reported no major differences in rates of mortality or stroke between the 2 procedures. Since the publication of the PARTNER A trial, the Core Valve High Risk Trial demonstrated noninferiority for survival at 1 and 2 years for the self-expanding prosthesis. This trial reported no significant differences in stroke rates between groups. An RCT directly comparing the Portico valve with other United States Food and Drug Administration (FDA)-approved valves found an increase in safety outcomes with Portico at 30 days but no major differences at 2 years. Gender-specific meta-analyses have found improved mortality with TAVI compared with surgical aortic valve replacement (SAVR) in women. The evidence is sufficient to determine that the technology results in an improvement in the net health outcome.

For individuals who have severe symptomatic aortic stenosis who are at intermediate-risk for open surgery who receive TAVI, the evidence includes 3 RCTs comparing TAVI with surgical repair including individuals at intermediate surgical risk, 2 RCTs only in individuals with intermediate-risk, and multiple systematic reviews and nonrandomized cohort studies. Relevant outcomes are OS,
symptoms, morbid events, and treatment-related mortality and morbidity. Five RCTs have evaluated TAVI in individuals with intermediate risk for open surgery. Three of them, which included over 4000 individuals combined, reported noninferiority of TAVI versus SAVR for their composite outcome measures (generally including death and stroke). A subset analysis of individuals (n=383) with low and intermediate surgical risk from a fourth trial reported higher rates of death at 2 years for TAVI versus SAVR. The final study (N=70) had an unclear hypothesis and reported 30-day mortality rates favoring SAVR (15% vs. 2%, p=.07) but used a transthoracic approach. The rates of adverse events differed between groups, with bleeding, cardiogenic shock, and acute kidney injury higher in individuals randomized to open surgery and permanent pacemaker requirement higher in individuals randomized to TAVI. Subgroup analyses of meta-analyses and the transthoracic arm of the Leon et al (2010) RCT have suggested that the benefit of TAVI may be limited to individuals who are candidates for transfemoral access. Although several RCTs have 2 years of follow-up post procedure, it is uncertain how many individuals require reoperation. The evidence is sufficient to determine that the technology results in an improvement in the net health outcome.

For individuals who have severe symptomatic aortic stenosis who are at low risk for open surgery who receive TAVI, the evidence includes RCTs comparing TAVI with surgical repair in individuals selected without specific surgical risk criteria but including individuals at low surgical risk and RCTs enrolling only low surgical risk individuals, systematic reviews, and nonrandomized cohort studies. Relevant outcomes are OS, symptoms, morbid events, and treatment-related mortality and morbidity. Two RCTs (Evolut Low Risk Trial and the Study to Establish the Safety and Effectiveness of the SAPIEN 3 Transcatheter Heart Valve in low risk individuals who have severe, calcific, aortic stenosis requiring aortic valve replacement [PARTNER 3]) have been conducted exclusively in individuals at low surgical risk and 1 RCT, Nordic Aortic Intervention Trial included predominantly individuals at low surgical risk. In the Evolut Low Risk Trial, transcatheter aortic valve replacement was noninferior to SAVR with respect to the composite outcome of death or disabling stroke at 24 months. In the PARTNER 3 trial, the rate of the composite of death, stroke, or rehospitalization at 1 year was significantly lower with TAVI than SAVR. In the Nordic Aortic Intervention Trial, the risk of the composite outcome of death from any cause, stroke, or myocardial infarction at 5 years was similar for TAVI and SAVR and transcatheter aortic valve replacement showed less structural valve deterioration than SAVR at 6 years. In the publicly sponsored UK TAVI trial, which was conducted in individuals aged 70 years or older with predominantly low surgical risk, TAVI was noninferior to SAVR with respect to all-cause mortality at 1 year. The evidence is sufficient to determine that the technology results in an improvement in the net health outcome.
Transcatheter Aortic Valve Implantation for Aortic Stenosis

Policy # 00406
Original Effective Date: 03/19/2014
Current Effective Date: 07/01/2023

For individuals who have valve dysfunction and aortic stenosis or regurgitation after open surgical aortic valve repair who receive transcatheter aortic “valve-in-valve” (ViV) implantation, the evidence includes observational studies including registry data with follow-up ranging from 1 month to 5 years and systematic reviews. Relevant outcomes are OS, symptoms, morbid events, and treatment-related mortality and morbidity. Recent meta-analyses of observational studies have compared ViV TAVI to redo-SAVR and have reported a reduced risk of short-term mortality (<30 days) with ViV TAVI. Beyond 30 days, meta-analyses have reported mortality outcomes that were similarly favorable or improved with redo-SAVR. The PARTNER 2 registry reported a 50.6% rate of all-cause mortality after 5 years among individuals with high surgical risk; individuals who received a 23-mm SAPIEN XT valve had a significantly higher risk of mortality compared to those who received a 26-mm valve (hazard ratio, 1.55; 95% confidence interval, 1.09 to 2.20; p=.01). Given that no RCTs are available, selection bias cannot be ruled out. The evidence is insufficient to determine that the technology results in an improvement in the net health outcome.

For individuals who have symptomatic aortic stenosis who receive a cerebral embolic protection device while undergoing TAVI, the evidence includes 4 RCTs of individuals with low- to high-risk for open surgery. Relevant outcomes are OS, symptoms, morbid events, and treatment-related mortality and morbidity. Three RCTs have primarily focused on the number and/or volume of new brain lesions detected on magnetic resonance imaging with unclear correlations to neurocognitive outcomes. Only 1 of these trials (CLEAN-TAVI) found a significant reduction in brain lesion number; however, the relevance of this trial is limited as it used a precursor to the currently marketed Sentinel device. The largest and most recent trial (PROTECTED TAVR) enrolled 3000 individuals and did not find a significant reduction in the incidence of periprocedural stroke within 72 hours or before hospital discharge. Prior trials have generally failed to demonstrate neurocognitive protection or significant reductions in major cardiac and cerebrovascular events. Studies have not stratified results by operative risk levels and have suggested differential benefits based on valve type. The evidence is insufficient to determine that the technology results in an improvement in the net health outcome.

Supplemental Information
Clinical Input From Physician Specialty Societies and Academic Medical Centers
While the various physician specialty societies and academic medical centers may collaborate with and make recommendations during this process, through the provision of appropriate reviewers,
Transcatheter Aortic Valve Implantation for Aortic Stenosis

Policy # 00406
Original Effective Date: 03/19/2014
Current Effective Date: 07/01/2023

input received does not represent an endorsement or position statement by the physician specialty societies or academic medical centers, unless otherwise noted.

2016 Input
In response to requests, input was received from 2 specialty societies (1 of which provided 2 responses) and 2 academic medical centers (1 of which provided 3 responses) while this policy was under review in 2016. Although there was no support for the use of valve-in-valve transcatheter aortic valve implantation (TAVI) to replace a failed bioprosthetic valve in general use, there was general support for the use of valve-in-valve TAVI for individuals at high and prohibitive risk for surgery.

2014 Input
In response to requests, input was received from 2 specialty societies (1 of which provided 2 responses) and 6 academic medical centers while this policy was under review in 2014. All reviewers who responded considered TAVI medically necessary for individuals with severe aortic stenosis with a calcified aortic annulus and New York Heart Association functional class II, III, or IV symptoms, and who are not candidates for open surgery or who are operable candidates but are at high-risk for open surgery. Most reviewers would require a patient to have a left ventricular ejection fraction greater than 20% for the procedure to be medically necessary. All reviewers indicated support for limiting the use of TAVI to individuals who are not candidates for open surgery or who are operable candidates but are at high-risk for open surgery, and most supported using the U.S. FDA definition of high-risk and extreme risk for surgery. Most reviewers noted that self-expanding valves have been associated with higher rates of postprocedural pacemaker requirements but that neither type of valve was clearly superior to the other.

Practice Guidelines and Position Statements
Guidelines or position statements will be considered for inclusion in ‘Supplemental Information’ if they were issued by, or jointly by, a US professional society, an international society with US representation, or National Institute for Health and Care Excellence (NICE). Priority will be given to guidelines that are informed by a systematic review, include strength of evidence ratings, and include a description of management of conflict of interest.
Transcatheter Aortic Valve Implantation for Aortic Stenosis

Policy # 00406
Original Effective Date: 03/19/2014
Current Effective Date: 07/01/2023

American College of Cardiology and American Heart Association

In 2014, the American College of Cardiology and the American Heart Association published joint guidelines on the management of valvular heart disease. Both groups issued a joint focused update in 2017. In 2020, a new full guideline was published that replaces the 2014 revision and 2017 focused update. The 2020 guidelines made the following recommendations on timing of intervention and choice of surgical or transcatheter intervention for treatment of aortic stenosis (Table 2).

Additionally, the guidelines state the following:

- "Treatment of severe aortic stenosis with either a transcatheter or surgical valve prosthesis should be based primarily on symptoms or reduced ventricular systolic function. Earlier intervention may be considered if indicated by results of exercise testing, biomarkers, rapid progression, or the presence of very severe stenosis."
- "Indications for TAVI are expanding as a result of multiple randomized trials of TAVI versus surgical aortic valve replacement. The choice of type of intervention for a patient with severe aortic stenosis should be a shared decision-making process that considers the lifetime risks and benefits associated with type of valve (mechanical versus bioprosthetic) and type of approach (transcatheter versus surgical)."

Table 2. Recommendations on Surgical or Transcatheter Intervention for Aortic Stenosis

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>COR</th>
<th>LOE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timing of Intervention of AS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>“In adults with severe high-gradient AS (Stage D1) and symptoms of exertional</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dyspnea, heart failure, angina, syncope, or presyncope by history or on exercise</td>
<td></td>
<td></td>
</tr>
<tr>
<td>testing, AVR is indicated.”</td>
<td>I</td>
<td>A</td>
</tr>
<tr>
<td>“In asymptomatic individuals with severe AS and a left ventricular ejection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fraction <50% (Stage C2), AVR is indicated.”</td>
<td>I</td>
<td>B</td>
</tr>
<tr>
<td>“In asymptomatic individuals with severe AS (Stage C1) who are undergoing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cardiac surgery for other indications, AVR is indicated.”</td>
<td>I</td>
<td>B</td>
</tr>
<tr>
<td>"In symptomatic individuals with low-flow, low-gradient severe AS with reduced</td>
<td></td>
<td></td>
</tr>
<tr>
<td>left ventricular ejection fraction (Stage D2), AVR is recommended."</td>
<td>I</td>
<td>B</td>
</tr>
</tbody>
</table>
Transcatheter Aortic Valve Implantation for Aortic Stenosis

Policy # 00406
Original Effective Date: 03/19/2014
Current Effective Date: 07/01/2023

<table>
<thead>
<tr>
<th>Statement</th>
<th>Level</th>
<th>Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>"In symptomatic individuals with low-flow, low-gradient severe AS with reduced left ventricular ejection fraction (Stage D3), AVR is recommended if AS is the most likely cause of symptoms."</td>
<td>I</td>
<td>B</td>
</tr>
<tr>
<td>“In apparently asymptomatic individuals with severe AS (Stage C1) and low surgical risk, AVR is reasonable when an exercise test demonstrates decreased exercise tolerance (normalized for age and sex) or a fall in systolic blood pressure of ≥10 mmHg from baseline to peak exercise.”</td>
<td>IIa</td>
<td>B</td>
</tr>
<tr>
<td>“In asymptomatic individuals with very severe AS (defined as an aortic velocity of ≥5 m/s) and low surgical risk, AVR is reasonable."</td>
<td>IIa</td>
<td>B</td>
</tr>
<tr>
<td>“In apparently asymptomatic individuals with severe AS (Stage C1) and low surgical risk, AVR is reasonable when the serum B-type natriuretic peptide level is >3 times normal.”</td>
<td>IIa</td>
<td>B</td>
</tr>
<tr>
<td>"In asymptomatic individuals with high-gradient severe AS (Stage C1) and low surgical risk, AVR is reasonable when serial testing shows an increase in aortic velocity ≥0.3 m/s per year."</td>
<td>IIa</td>
<td>B</td>
</tr>
<tr>
<td>"In asymptomatic individuals with severe high-gradient AS (Stage C1) and a progressive decrease in left ventricular ejection fraction on at least 3 serial imaging studies to <60%, AVR may be considered."</td>
<td>IIb</td>
<td>B</td>
</tr>
<tr>
<td>"In individuals with moderate AS (Stage B) who are undergoing cardiac surgery for other indications, AVR may be considered."</td>
<td>IIb</td>
<td>C</td>
</tr>
</tbody>
</table>

Choice of SAVR Versus TAVI for Individuals for Whom a Bioprosthetic AVR is Appropriate

<table>
<thead>
<tr>
<th>Statement</th>
<th>Level</th>
<th>Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>"For symptomatic and asymptomatic individuals with severe AS and any indication for AVR who are <65 years of age or have a life expectancy >20 years, SAVR is recommended."</td>
<td>I</td>
<td>A</td>
</tr>
<tr>
<td>"For symptomatic individuals with severe AS who are 65 to 80 years of age and have no anatomic contraindication to transfemoral TAVI, either SAVR or transfemoral TAVI is recommended after shared decision-making about the balance between expected patient longevity and valve durability."</td>
<td>I</td>
<td>A</td>
</tr>
</tbody>
</table>
Transcatheter Aortic Valve Implantation for Aortic Stenosis

Policy # 00406
Original Effective Date: 03/19/2014
Current Effective Date: 07/01/2023

<table>
<thead>
<tr>
<th>Case Description</th>
<th>Level</th>
<th>Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>"For symptomatic individuals with severe AS who are >80 years of age or for younger individuals with a life expectancy of < 10 years and no anatomic contraindication to transfemoral TAVI, transfemoral TAVI is recommended in preference to SAVR."</td>
<td>I</td>
<td>A</td>
</tr>
<tr>
<td>"In asymptomatic individuals with severe AS and a left ventricular ejection fraction <50% who are ≤80 years of age and have no anatomic contraindication to transfemoral TAVI, the decision between TAVI and SAVR should follow the same recommendations as for symptomatic individuals in the 3 recommendations above."</td>
<td>I</td>
<td>B</td>
</tr>
<tr>
<td>"For asymptomatic individuals with severe AS and an abnormal exercise test, very severe AS, rapid progression, or an elevated B-type natriuretic peptide, SAVR is recommended in preference to TAVI."</td>
<td>I</td>
<td>B</td>
</tr>
<tr>
<td>"For individuals with an indication for AVR for whom a bioprosthetic valve is preferred but valve or vascular anatomy or other factors are not suitable for transfemoral TAVI, SAVR is recommended."</td>
<td>I</td>
<td>A</td>
</tr>
<tr>
<td>"For symptomatic individuals of any age with severe AS and a high or prohibitive surgical risk, TAVI is recommended if predicted post-TAVI survival is >12 months with an acceptable quality of life."</td>
<td>I</td>
<td>A</td>
</tr>
<tr>
<td>"For symptomatic individuals with severe AS for whom predicted post-TAVI or post-SAVR survival is <12 months or for whom minimal improvement in quality of life is expected, palliative care is recommended after shared decision-making, including discussion of patient preferences and values."</td>
<td>I</td>
<td>C</td>
</tr>
<tr>
<td>"In critically ill individuals with severe AS, percutaneous aortic balloon dilation may be considered as a bridge to SAVR or TAVI."</td>
<td>IIb</td>
<td>C</td>
</tr>
</tbody>
</table>

Intervention for Prosthetic Valve Stenosis

<table>
<thead>
<tr>
<th>Case Description</th>
<th>Level</th>
<th>Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>"In individuals with symptomatic severe stenosis of a bioprosthetic or mechanical prosthetic valve, repeat surgical intervention is indicated unless surgical risk is prohibitive."</td>
<td>I</td>
<td>B</td>
</tr>
</tbody>
</table>
Transcatheter Aortic Valve Implantation for Aortic Stenosis

Policy # 00406
Original Effective Date: 03/19/2014
Current Effective Date: 07/01/2023

"For severely symptomatic individuals with bioprosthetic aortic valve stenosis and high or prohibitive surgical risk, a transcatheter ViV procedure is reasonable when performed at a Comprehensive Valve Center."

"For individuals with significant bioprosthetic valve stenosis attributable to suspected or documented valve thrombosis, oral anticoagulation with a VKA is reasonable."

Prosthetic Valve Regurgitation

"In individuals with intractable hemolysis or HF attributable to prosthetic transvalvular or paravalvular leak, surgery is recommended unless surgical risk is high or prohibitive."

"In asymptomatic individuals with severe prosthetic regurgitation and low operative risk, surgery is reasonable."

"In individuals with prosthetic paravalvular regurgitation with the following: 1) either intractable hemolysis or NYHA class III or IV symptoms and 2) who are at high or prohibitive surgical risk and 3) have anatomic features suitable for catheter-based therapy, percutaneous repair of paravalvular leak is reasonable when performed at a Comprehensive Valve Center."

"For individuals with severe HF symptoms caused by bioprosthetic valve regurgitation who are at high to prohibitive surgical risk, a transcatheter ViV procedure is reasonable when performed at a Comprehensive Valve Center."

National Institute for Health and Care Excellence
In June 2019, the NICE published interventional procedures guidance [IPG653] regarding valve-in-valve TAVI for aortic bioprosthetic valve dysfunction. The guidance was informed by an Interventional procedure overview described previously. The guidance recommendation is that "Current evidence on the safety and efficacy of valve-in-valve transcatheter aortic valve implantation..."
Transcatheter Aortic Valve Implantation for Aortic Stenosis

Policy # 00406
Original Effective Date: 03/19/2014
Current Effective Date: 07/01/2023

(ViV-TAVI) for aortic bioprosthetic dysfunction is adequate to support the use of this procedure provided that standard arrangements are in place for clinical governance, consent and audit.

In November 2021, the NICE updated their guidance on heart valve disease. They recommend individuals be offered TAVI if surgical aortic valve replacement (SAVR) is contraindicated or the patient is at high surgical risk.

U.S. Preventive Services Task Force Recommendations
Not applicable.

Medicare National Coverage
The Centers for Medicare & Medicaid Services published a decision memo on the use of TAVR in 2012 and 2019. The 2019 memo indicated that the Centers for Medicare & Medicaid Services covers TAVI when used according to FDA indications when the following conditions are met:
- Device has FDA approval.
- The patient (preoperatively and postoperatively) is under the care of a heart team including an experienced cardiac surgeon and interventional cardiologist, who have independently examined the patient, as well as providers from other physician groups, advanced patient practitioners, nurses, research personnel, and administrators.
- The interventional cardiologist(s) and cardiac surgeon(s) jointly participate in the intraoperative technical aspects of TAVR,
- The hospital meets qualifications for performing TAVR.
- The heart team and hospital are participating in a prospective, national, audited registry that follows individuals for at least 1 year and collects specific patient, practitioner, and facility level outcomes.
- The registry collects necessary data and has an analysis plan to address specific questions and results are reported publicly.

The memo also stated that TAVR could be covered for non-FDA-approved indications under the Coverage with Evidence Development program. The following is a summary of the main conditions required for Coverage with Evidence Development:
- The interventional cardiologist(s) and cardiac surgeon(s) jointly participate in the intraoperative technical aspects of TAVR.
Transcatheter Aortic Valve Implantation for Aortic Stenosis

Policy # 00406
Original Effective Date: 03/19/2014
Current Effective Date: 07/01/2023

TAVR is performed within a clinical study that has the following characteristics:
- “The clinical study must adhere to the … standards of scientific integrity and relevance to the Medicare population.”
- The study must address quality of life and adverse events at follow-up periods of 1 year or longer.

The decision memo does not address concurrent use of a cerebral embolic protection device.

Ongoing and Unpublished Clinical Trials
Some currently ongoing trials that might influence this review are listed in Table 3.

Table 3. Summary of Key Trials

<table>
<thead>
<tr>
<th>NCT No.</th>
<th>Trial Name</th>
<th>Planned Enrollment</th>
<th>Completion Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ongoing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCT05002088a</td>
<td>Retrospective Assessment of the Portico Transcatheter Aortic Valve for Valve-in-Valve Use</td>
<td>100</td>
<td>Jun 2027</td>
</tr>
<tr>
<td>NCT03042104a</td>
<td>Evaluation of Transcatheter Aortic Valve Replacement Compared to Surveillance for Individuals with Asymptomatic Severe Aortic Stenosis</td>
<td>901</td>
<td>Mar 2032</td>
</tr>
<tr>
<td>NCT03112980</td>
<td>Randomized, Multi-Center, Event-Driven Trial of TAVI versus SAVR in Individuals with Symptomatic Severe Aortic Valve Stenosis and Intermediate Risk of Mortality - DEDICATE</td>
<td>1417</td>
<td>Mar 2027</td>
</tr>
<tr>
<td>NCT01586910a</td>
<td>Surgical Replacement and Transcatheter Aortic Valve Implantation (SURTAVI)</td>
<td>1746 (actual enrollment)</td>
<td>Nov 2026</td>
</tr>
</tbody>
</table>
Transcatheter Aortic Valve Implantation for Aortic Stenosis

Policy # 00406
Original Effective Date: 03/19/2014
Current Effective Date: 07/01/2023

<table>
<thead>
<tr>
<th>NCT No.</th>
<th>Trial Name</th>
<th>Planned Enrollment</th>
<th>Completion Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCT01057173</td>
<td>Transcatheter Versus Surgical Aortic Valve Implantation in Individuals with Severe Aortic Valve Stenosis (NOTION)</td>
<td>280</td>
<td>Apr 2033</td>
</tr>
<tr>
<td>NCT01314313</td>
<td>The PARTNER II Trial "Placement of Aortic Transcatheter Valves Trial" (US)</td>
<td>2032</td>
<td>Nov 2024</td>
</tr>
<tr>
<td>NCT02163850</td>
<td>SALUS Trial: Transcatheter Aortic Valve Replacement System Pivotal Trial the Safety and Effectiveness of the Direct Flow Medical Transcatheter Aortic Valve System</td>
<td>878</td>
<td>Dec 2021 (unknown)</td>
</tr>
<tr>
<td>NCT01737528</td>
<td>Society of Thoracic Surgeons and American College of Cardiology Transcatheter Valve Therapy Registry (STS/ACC TVT Registry)</td>
<td>16,000</td>
<td>Jun 2035</td>
</tr>
<tr>
<td>NCT02628899</td>
<td>Feasibility of Transcatheter Aortic Valve Replacement in Low-Risk Individuals with Symptomatic, Severe Aortic Stenosis</td>
<td>300</td>
<td>Jan 2023</td>
</tr>
<tr>
<td>NCT02000115</td>
<td>Portico Re-sheathable Transcatheter Aortic Valve System US IDE Trial (PORTICO-IDE)</td>
<td>1150</td>
<td>Jul 2025</td>
</tr>
<tr>
<td>NCT02825134</td>
<td>Nordic Aortic Valve Intervention Trial 2 - A Randomized Multicenter Comparison of Transcatheter Versus Surgical Aortic Valve Replacement in Younger Low Surgical Risk Individuals with Severe Aortic Stenosis (NOTION-2)</td>
<td>372</td>
<td>Jun 2029</td>
</tr>
<tr>
<td>NCT02675114</td>
<td>A Prospective, Randomized, Controlled, Multi-Center Study to Establish the Safety and Effectiveness of the SAPIEN 3 Transcatheter Heart Valve in low risk individuals who have severe,</td>
<td>1000</td>
<td>Dec 2029</td>
</tr>
</tbody>
</table>
Transcatheter Aortic Valve Implantation for Aortic Stenosis

Policy # 00406
Original Effective Date: 03/19/2014
Current Effective Date: 07/01/2023

<table>
<thead>
<tr>
<th>NCT No.</th>
<th>Trial Name</th>
<th>Planned Enrollment</th>
<th>Completion Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>calcific, aortic stenosis requiring aortic valve replacement (PARTNER 3)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NCT: national clinical trial.

aN Denotes industry-sponsored or cosponsored trial.

References

©2023 Blue Cross and Blue Shield of Louisiana

Blue Cross and Blue Shield of Louisiana is an independent licensee of the Blue Cross and Blue Shield Association and incorporated as Louisiana Health Service & Indemnity Company.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without permission from Blue Cross and Blue Shield of Louisiana.
Transcatheter Aortic Valve Implantation for Aortic Stenosis

Policy # 00406
Original Effective Date: 03/19/2014
Current Effective Date: 07/01/2023

©2023 Blue Cross and Blue Shield of Louisiana

Blue Cross and Blue Shield of Louisiana is an independent licensee of the Blue Cross and Blue Shield Association and incorporated as Louisiana Health Service & Indemnity Company.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without permission from Blue Cross and Blue Shield of Louisiana.
Transcatheter Aortic Valve Implantation for Aortic Stenosis

Policy # 00406
Original Effective Date: 03/19/2014
Current Effective Date: 07/01/2023

©2023 Blue Cross and Blue Shield of Louisiana

Blue Cross and Blue Shield of Louisiana is an independent licensee of the Blue Cross and Blue Shield Association and incorporated as Louisiana Health Service & Indemnity Company.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without permission from Blue Cross and Blue Shield of Louisiana.
Transcatheter Aortic Valve Implantation for Aortic Stenosis

Policy # 00406
Original Effective Date: 03/19/2014
Current Effective Date: 07/01/2023

©2023 Blue Cross and Blue Shield of Louisiana

Blue Cross and Blue Shield of Louisiana is an independent licensee of the Blue Cross and Blue Shield Association and incorporated as Louisiana Health Service & Indemnity Company.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without permission from Blue Cross and Blue Shield of Louisiana.

Page 24 of 35
Transcatheter Aortic Valve Implantation for Aortic Stenosis

Policy # 00406
Original Effective Date: 03/19/2014
Current Effective Date: 07/01/2023

Transcatheter Aortic Valve Implantation for Aortic Stenosis

Policy # 00406
Original Effective Date: 03/19/2014
Current Effective Date: 07/01/2023

Transcatheter Aortic Valve Implantation for Aortic Stenosis

Policy # 00406
Original Effective Date: 03/19/2014
Current Effective Date: 07/01/2023

Transcatheter Aortic Valve Implantation for Aortic Stenosis

Policy # 00406
Original Effective Date: 03/19/2014
Current Effective Date: 07/01/2023

©2023 Blue Cross and Blue Shield of Louisiana

Blue Cross and Blue Shield of Louisiana is an independent licensee of the Blue Cross and Blue Shield Association and incorporated as Louisiana Health Service & Indemnity Company.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without permission from Blue Cross and Blue Shield of Louisiana.
Transcatheter Aortic Valve Implantation for Aortic Stenosis

Policy # 00406
Original Effective Date: 03/19/2014
Current Effective Date: 07/01/2023

84. Toff WD, Hildick-Smith D, Kovac J, et al. Effect of Transcatheter Aortic Valve Implantation vs Surgical Aortic Valve Replacement on All-Cause Mortality in Patients With Aortic Stenosis: A Randomized Clinical Trial. JAMA. May 17 2022; 327(19): 1875-1887. PMID 35579641

Transcatheter Aortic Valve Implantation for Aortic Stenosis

Policy # 00406
Original Effective Date: 03/19/2014
Current Effective Date: 07/01/2023

104. Nishimura RA, O'Gara PT, Bonow RO. Guidelines Update on Indications for Transcatheter Aortic Valve Replacement. JAMA Cardiol. Sep 01 2017; 2(9): 1036-1037. PMID 28768333

Policy History
Original Effective Date: 03/19/2014
Current Effective Date: 07/01/2023

03/06/2014 Medical Policy Committee review
03/19/2014 Medical Policy Implementation Committee approval. New policy.
03/05/2015 Medical Policy Committee review
03/20/2015 Medical Policy Implementation Committee approval. Added “FDA approved” to the eligible for coverage statement. Updated rationale/source and references.
08/03/2015 Coding update: ICD10 Diagnosis code section added; ICD9 Procedure code section removed.
03/05/2015 Medical Policy Committee review
03/20/2015 Medical Policy Implementation Committee approval. Coverage eligibility unchanged.
05/05/2016 Medical Policy Committee review
Transcatheter Aortic Valve Implantation for Aortic Stenosis

Policy # 00406
Original Effective Date: 03/19/2014
Current Effective Date: 07/01/2023

05/18/2016 Medical Policy Implementation Committee approval. Coverage eligibility unchanged.
11/03/2016 Medical Policy Committee review
11/16/2016 Medical Policy Implementation Committee approval. Added coverage statement for valve in valve for patient at high or prohibitive risk for open surgery.
01/01/2017 Coding update: Removing ICD-9 Diagnosis Codes
05/04/2017 Medical Policy Committee review
05/17/2017 Medical Policy Implementation Committee approval. Added “native valve” to coverage statement.
06/07/2018 Medical Policy Committee review
06/20/2018 Medical Policy Implementation Committee approval. Policy statements changed to add patients at intermediate surgical risk to first eligible for coverage statement.
08/14/2018 Coding update
06/06/2019 Medical Policy Committee review
06/19/2019 Medical Policy Implementation Committee approval. Coverage eligibility unchanged.
03/05/2020 Medical Policy Committee review
03/11/2020 Medical Policy Implementation Committee approval. Eligible for coverage policy statement related to patients with native valve aortic stenosis changed to add an exclusion for patients with unicuspid or bicuspid aortic valve and to add an inclusion for patients at low risk for open surgery. Removed “Patient is not an operable candidate for open surgery, as judged by at least two cardiovascular specialists (cardiologist and/or cardiac surgeon); or patient is an operable candidate but is at high or intermediate risk for open surgery.” From criteria section.
07/20/2022 Coding update
05/06/2021 Medical Policy Committee review
05/12/2021 Medical Policy Implementation Committee approval. FDA updated. No change to coverage.
05/05/2022 Medical Policy Committee review
05/11/2022 Medical Policy Implementation Committee approval. Coverage eligibility unchanged.
04/06/2023 Medical Policy Committee review
Transcatheter Aortic Valve Implantation for Aortic Stenosis

Policy # 00406
Original Effective Date: 03/19/2014
Current Effective Date: 07/01/2023

04/12/2023 Medical Policy Implementation Committee approval. Added “Based on review of available data, the Company considers the use of a cerebral embolic protection device (e.g., Sentinel) during transcatheter aortic valve replacement procedures to be investigational.”

07/24/2023 Coding update

Next Scheduled Review Date: 04/2024

Coding
The five character codes included in the Blue Cross Blue Shield of Louisiana Medical Policy Coverage Guidelines are obtained from Current Procedural Terminology (CPT®), copyright 2022 by the American Medical Association (AMA). CPT is developed by the AMA as a listing of descriptive terms and five character identifying codes and modifiers for reporting medical services and procedures performed by physician.

The responsibility for the content of Blue Cross Blue Shield of Louisiana Medical Policy Coverage Guidelines is with Blue Cross and Blue Shield of Louisiana and no endorsement by the AMA is intended or should be implied. The AMA disclaims responsibility for any consequences or liability attributable or related to any use, nonuse or interpretation of information contained in Blue Cross Blue Shield of Louisiana Medical Policy Coverage Guidelines. Fee schedules, relative value units, conversion factors and/or related components are not assigned by the AMA, are not part of CPT, and the AMA is not recommending their use. The AMA does not directly or indirectly practice medicine or dispense medical services. The AMA assumes no liability for data contained or not contained herein. Any use of CPT outside of Blue Cross Blue Shield of Louisiana Medical Policy Coverage Guidelines should refer to the most current Current Procedural Terminology which contains the complete and most current listing of CPT codes and descriptive terms. Applicable FARS/DFARS apply.

CPT is a registered trademark of the American Medical Association.
Transcatheter Aortic Valve Implantation for Aortic Stenosis

Policy # 00406
Original Effective Date: 03/19/2014
Current Effective Date: 07/01/2023

Codes used to identify services associated with this policy may include (but may not be limited to) the following:

<table>
<thead>
<tr>
<th>Code Type</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPT</td>
<td>33361, 33362, 33363, 33364, 33365, 33366, 33367, 33368, 33369</td>
</tr>
<tr>
<td></td>
<td>Add code effective 07/01/2023: 33370</td>
</tr>
<tr>
<td>HCPCS</td>
<td>Add code effective 07/01/2023: C1889</td>
</tr>
<tr>
<td>ICD-10 Diagnosis</td>
<td>Add codes effective 08/01/2023: I06.0, I06.2, I08.0, I08.2, I08.3, I08.8, I08.9, I35.0</td>
</tr>
<tr>
<td></td>
<td>All related diagnoses</td>
</tr>
</tbody>
</table>

*Investigational – A medical treatment, procedure, drug, device, or biological product is Investigational if the effectiveness has not been clearly tested and it has not been incorporated into standard medical practice. Any determination we make that a medical treatment, procedure, drug, device, or biological product is Investigational will be based on a consideration of the following:

A. Whether the medical treatment, procedure, drug, device, or biological product can be lawfully marketed without approval of the U.S. Food and Drug Administration (FDA) and whether such approval has been granted at the time the medical treatment, procedure, drug, device, or biological product is sought to be furnished; or

B. Whether the medical treatment, procedure, drug, device, or biological product requires further studies or clinical trials to determine its maximum tolerated dose, toxicity, safety, effectiveness, or effectiveness as compared with the standard means of treatment or diagnosis, must improve health outcomes, according to the consensus of opinion among experts as shown by reliable evidence, including:

1. Consultation with technology evaluation center(s);
2. Credible scientific evidence published in peer-reviewed medical literature generally recognized by the relevant medical community; or
3. Reference to federal regulations.

**Medically Necessary (or “Medical Necessity”) - Health care services, treatment, procedures, equipment, drugs, devices, items or supplies that a Provider, exercising prudent clinical judgment, would provide to a patient for the purpose of preventing, evaluating, diagnosing or treating an illness, injury, disease or its symptoms, and that are:

A. In accordance with nationally accepted standards of medical practice;
Transcatheter Aortic Valve Implantation for Aortic Stenosis

Policy # 00406
Original Effective Date: 03/19/2014
Current Effective Date: 07/01/2023

B. Clinically appropriate, in terms of type, frequency, extent, level of care, site and duration, and considered effective for the patient's illness, injury or disease; and

C. Not primarily for the personal comfort or convenience of the patient, physician or other health care provider, and not more costly than an alternative service or sequence of services at least as likely to produce equivalent therapeutic or diagnostic results as to the diagnosis or treatment of that patient's illness, injury or disease.

For these purposes, “nationally accepted standards of medical practice” means standards that are based on credible scientific evidence published in peer-reviewed medical literature generally recognized by the relevant medical community, Physician Specialty Society recommendations and the views of Physicians practicing in relevant clinical areas and any other relevant factors.

‡ Indicated trademarks are the registered trademarks of their respective owners.

NOTICE: If the Patient’s health insurance contract contains language that differs from the BCBSLA Medical Policy definition noted above, the definition in the health insurance contract will be relied upon for specific coverage determinations.

NOTICE: Medical Policies are scientific based opinions, provided solely for coverage and informational purposes. Medical Policies should not be construed to suggest that the Company recommends, advocates, requires, encourages, or discourages any particular treatment, procedure, or service, or any particular course of treatment, procedure, or service.