Botulinum Toxins

Policy # 00012
Original Effective Date: 01/28/2003
Current Effective Date: 08/14/2019

Applies to all products administered or underwritten by Blue Cross and Blue Shield of Louisiana and its subsidiary, HMO Louisiana, Inc. (collectively referred to as the “Company”), unless otherwise provided in the applicable contract. Medical technology is constantly evolving, and we reserve the right to review and update Medical Policy periodically.

Note: Treatment of Hyperhidrosis is addressed separately in medical policy 00172.

When Services May Be Eligible for Coverage
Coverage for eligible medical treatments or procedures, drugs, devices or biological products may be provided only if:
- Benefits are available in the member’s contract/certificate, and
- Medical necessity criteria and guidelines are met.

Botulinum Toxin Type A
Based on review of available data, the Company may consider the use of botulinum toxin Type A products (Botox®, Dysport®, or Xeomin®)† to be eligible for coverage** for any of the following conditions:
- Strabismus ☁
- Blepharospasm or facial nerve (VII) disorders (including hemifacial spasm) ☁
- Cervical dystonia (spasmodic torticollis; applicable whether congenital, due to child birth injury, or traumatic injury). For this use, cervical dystonia must be associated with sustained head tilt or abnormal posturing with limited range of motion in the neck AND a history of recurrent involuntary contraction of one or more of the muscles of the neck, e.g., sternocleidomastoid, splenius, trapezius, or posterior cervical muscles ☁
- Upper limb spasticity ☁
- Lower limb spasticity ☁
- Axillary hyperhidrosis that is inadequately managed with topical agents ☁
- Urinary incontinence due to detrusor overactivity associated with a neurologic condition (e.g., Spinal Cord Injury, Multiple Sclerosis) in patients who have an inadequate response to or are intolerant of an anticholinergic medication ☁
- Overactive bladder (OAB) in adults unresponsive to or intolerant of an anticholinergic medication ☁
- Chronic migraine headaches ☁:

©2019 Blue Cross and Blue Shield of Louisiana

Blue Cross and Blue Shield of Louisiana is an independent licensee of the Blue Cross and Blue Shield Association and incorporated as Louisiana Health Service & Indemnity Company.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without permission from Blue Cross and Blue Shield of Louisiana.
Botulinum Toxins

Policy # 00012
Original Effective Date: 01/28/2003
Current Effective Date: 08/14/2019

- Prophylaxis of chronic migraine headaches in adult patients (≥ 15 days per month with headaches lasting 4 hours a day or longer); and
- There is documented failure of, contraindication to, or intolerance of at least two different migraine prophylaxis medications [e.g., beta-blockers, calcium channel blockers, tricyclic antidepressants, anticonvulsant medications, or calcitonin gene related peptide antagonists (CGRP inhibitors)] from two different therapeutic drug classes.

(Note: This specific patient criterion is a company requirement for coverage eligibility and will be denied as not medically necessary** if not met.)

- Dystonia/spasticity resulting in functional impairment (interference with joint function, mobility, communication, nutritional intake) and/or pain in patients with any of the following:
 - Focal dystonias:
 - Focal upper limb dystonia (e.g., organic writer’s cramp)
 - Oromandibular dystonia (orofacial dyskinesia, Meige syndrome)
 - Laryngeal dystonia (adductor spasmodic dysphonia)
 - Idiopathic (primary or genetic) torsion dystonia
 - Symptomatic (acquired) torsion dystonia
 - Spastic conditions
 - Cerebral palsy
 - Spasticity related to stroke
 - Acquired spinal cord or brain injury
 - Hereditary spastic paraparesis
 - Spastic hemiplegia
 - Neuromyelitis optica
 - Multiple sclerosis or Schilder’s disease
- Esophageal achalasia in patients who have not responded to dilation therapy or who are considered poor surgical candidates
- Chronic sialorrhea (drooling) associated with Parkinson disease, pediatric neurodevelopmental delay (e.g., Cerebral Palsy), atypical parkinsonism, stroke, or traumatic brain injury
- Chronic anal fissure
- Palmar hyperhidrosis that is inadequately managed with topical agents
Homocystinuria

Botulinum Toxins

Policy # 00012
Original Effective Date: 01/28/2003
Current Effective Date: 08/14/2019

- Hirschsprung’s disease with obstructive symptoms caused by internal sphincter achalasia following a pull-through surgery

∞ FDA-approved indication for at least one of the agents

Botulinum Toxin Type B

Based on review of available data, the Company may consider the use of botulinum toxin Type B products (Myobloc®) ‡ to be eligible for coverage** for any of the following conditions:

- Cervical dystonia (spasmodic torticollis; applicable whether congenital, due to child birth injury, or traumatic injury). For this use, cervical dystonia must be associated with sustained head tilt or abnormal posturing with limited range of motion in the neck AND a history of recurrent involuntary contraction of one or more of the muscles of the neck, e.g., sternocleidomastoid, splenius, trapezius, or posterior cervical muscles. ∞
- Sialorrhea (drooling) associated with Parkinson disease
- Incontinence due to detrusor overreactivity (urge incontinence), either idiopathic or due to neurogenic causes (e.g., spinal cord injury, multiple sclerosis), that is inadequately controlled with anticholinergic therapy.

∞ FDA-approved indication

Note that for re-authorizations of either botulinum toxin type A or B, documentation of a positive response to the botulinum toxin therapy must be provided, otherwise it will be denied as not medically necessary

When Services Are Considered Not Medically Necessary

Based on review of available data, the Company considers the use of botulinum toxin Type A products (Botox, Xeomin, or Dysport) in the treatment of chronic migraines in the absence of failure, contraindication, or intolerance to at least two different migraine prophylaxis medications from two different therapeutic drug classes to be not medically necessary.**

Based on review of available data, the Company considers the re-authorization of botulinum toxin Type A or B products (Botox, Xeomin, Dysport, or Myobloc) in the absence of a positive response to treatment to be not medically necessary.**
Botulinum Toxins

Policy # 00012
Original Effective Date: 01/28/2003
Current Effective Date: 08/14/2019

Based on review of available data, the Company considers the use of incobotulinumtoxinA (Xeomin) in chronic sialorrhea (drooling) associated with any conditions OTHER than Parkinson disease, pediatric neurodevelopmental delay (e.g., Cerebral Palsy), atypical parkinsonism, stroke, or traumatic brain injury to be not medically necessary.**

When Services Are Considered Investigational
Coverage is not available for investigational medical treatments or procedures, drugs, devices or biological products.

Based on review of available data, the Company considers, with the exception of cosmetic indications, the use of all botulinum toxin formulations to be investigational* for all other indications (not specifically mentioned above for the requested drug), including but not limited to the following:

- Non-migraine headaches (e.g., cluster headaches, tension-type headaches, etc.)
- Chronic low back pain
- Joint pain
- Mechanical neck disorders
- Neuropathic pain after neck dissection
- Myofascial pain syndrome
- Temporomandibular joint disorders
- Trigeminal neuralgia
- Pain after hemorrhoidectomy or lumpectomy
- Tremors such as benign essential tremor
- Tinnitus
- Chronic motor tic disorder, and tics associated with Tourette’s syndrome (motor tics)
- Lateral epidyndilitis
- Benign prostatic hyperplasia
- Interstitial cystitis
- Detrusor sphincteric dyssynergia (after spinal cord injury)
- Prevention of pain associated with breast reconstruction after mastectomy
- Hirschsprung’s disease (EXCEPT those with obstructive symptoms caused by internal sphincter achalasia following a pull-through surgery)
Botulinum Toxins

Policy # 00012
Original Effective Date: 01/28/2003
Current Effective Date: 08/14/2019

- Gastroparesis
- Facial wound healing
- Internal anal sphincter (IAS) achalasia
- Depression

Based on review of available data, the Company considers the use of onabotulinumtoxinA (Botox) or abobotulinumtoxinA (Dysport) in chronic sialorrhea (drooling) associated with any conditions OTHER than Parkinson disease, pediatric neurodevelopmental delay (e.g., Cerebral Palsy), atypical parkinsonism, stroke, or traumatic brain injury to be investigational.*

When Services Are Not Covered

The use of all botulinum toxin formulations as treatment of wrinkles or other cosmetic indications is a contract exclusion and is therefore not covered.**

Background/Overview

Botulinum is a family of toxins produced by the anaerobic organism Clostridia botulinum. Four formulations of botulinum toxin have been approved by the U.S. Food and Drug Administration (FDA). Labeled indications of these agents differ; however, all are FDA-approved for treating cervical dystonia in adults. Botulinum toxin products are also used for a range of off-label indications.

There are seven distinct serotypes designated as type A, B, C-1, D, E, F, and G. In the United States, four preparations of botulinum are commercially available; three using type A serotype and one using type B serotype. The drug names of the botulinum toxin products were changed in 2009; trade names and product formulations did not change. The three formulations of botulinum toxin type A are currently called onabotulinumtoxinA (Botox), abobotulinumtoxinA (Dysport), and incobotulinumtoxinA (Xeomin). Xeomin, the newest product marketed in the U.S., consists of the pure neurotoxin without complexing proteins and is the only product that is stable at room temperature for up to four years. Myobloc contains botulinum toxin type B; the current name of this drug is rimabotulinumtoxinB.

All four products are approved by the FDA for the treatment of cervical dystonia in adults; this is the only FDA-approved indication for Myobloc. Dystonia is a general term describing a state of
abnormal or disordered tonicity of muscle. As an example, esophageal achalasia is a dystonia of the lower esophageal sphincter, while cervical dystonia is also known as torticollis. Spasticity is a subset of dystonia, describing a velocity-dependent increase in tonic-stretch reflexes with exaggerated tendon jerks. Spasticity typically is associated with injuries to the central nervous system. Spasticity is a common feature of cerebral palsy.

Cervical dystonia is a movement disorder (nervous system disease) characterized by sustained muscle contractions. This results in involuntary, abnormal, squeezing and twisting muscle contractions in the head and neck region. These muscle contractions result in sustained abnormal positions or posturing. Sideways or lateral rotation of the head and twisting of the neck is the most common finding in cervical dystonia. Muscle hypertrophy occurs in most patients. When using botulinum toxin to treat cervical dystonia, the postural disturbance and pain must be of a severity to interfere with activities of daily living; and the symptoms must have been unresponsive to a trial of standard conservative therapy. In addition, before using botulinum toxin, alternative causes of symptoms such as cervicogenic headaches must have been considered and excluded.

FDA or Other Governmental Regulatory Approval

U.S. Food and Drug Administration (FDA)

There are four botulinum toxin products currently approved by the FDA. These include onabotulinumtoxinA (Botox), abobotulinumtoxinA (Dysport), incobotulinumtoxinA (Xeomin), and rimabotulinumtoxin B (Myobloc).

Among the botulinum toxin products, onabotulinumtoxinA (Botox) is FDA-approved for the largest number of indications. It is approved for the treatment of overactive bladder, treatment of urinary incontinence, prophylaxis of migraine headaches, treatment of spasticity (upper and lower), treatment of cervical dystonia, treatment of severe axillary hyperhidrosis, treatment of blepharospasm, and the treatment of strabismus.

IncobotulinumtoxinA (Xeomin) is indicated for the treatment of chronic sialorrhea, upper limb spasticity, cervical dystonia, and blepharospasm. AbobotulinumtoxinA (Dysport) is indicated for the treatment of cervical dystonia, the treatment of spasticity in adults, and the treatment of lower limb spasticity in pediatric patients. RimabotulinumtoxinB (Myobloc) is indicated for the treatment of cervical dystonia.
Botulinum Toxins

Policy # 00012
Original Effective Date: 01/28/2003
Current Effective Date: 08/14/2019

Rationale/Source
This medical policy was developed through consideration of peer-reviewed medical literature generally recognized by the relevant medical community, U.S. Food and Drug Administration approval status, nationally accepted standards of medical practice and accepted standards of medical practice in this community, Blue Cross and Blue Shield Association technology assessment program (TEC) and other non-affiliated technology evaluation centers, reference to federal regulations, other plan medical policies, and accredited national guidelines.

This evidence review was originally created in 1997 and has been updated regularly with searches of the MEDLINE database. Most recently, the literature was reviewed through August 6, 2018. For studies published before 2000, it is assumed that botulinum toxin (Botox), the only FDA–approved agent at that time, was used.

Dystonia/Spasticity
A Cochrane review by Castelão et al (2017), which was an update of a Cochrane Review first published in 2005, identified 8 double-blind randomized controlled trials (RCTs) (total N=1010 patients) with moderate overall risk of bias that compared the efficacy and safety of botulinum toxin type A with placebo in cervical dystonia. The primary efficacy outcome was reductions in cervical dystonia-specific impairment. The primary safety outcome was the proportion of participants with any adverse event. All RCTs evaluated the effect of a single botulinum toxin type A treatment session, using doses from 150 to 236 U of onabotulinumtoxinA (Botox), 120 to 240 U of incobotulinumtoxinA (Xeomin), or 250 to 1000 U of abobotulinumtoxinA (Dysport). Treatment resulted in reduction of 8.06 points (95% confidence interval [CI], 6.08 to 10.05; I²=0%) on the Toronto Western Spasmodic Torticollis Rating Scale at week 4 after injection compared with placebo. While there were no differences in withdrawals due to adverse events between the active and placebo treatment groups, botulinum toxin type A was associated with an increased risk of an adverse event (relative risk [RR], 1.19; 95% CI, 1.03 to 1.36; I²=16%) with dysphagia (9%) and diffuse weakness/tiredness (10%) the most common treatment-related adverse events.

A systematic review and meta-analysis by Dong et al (2017) identified 22 RCTs (total N=1804 participants) that evaluated the efficacy of botulinum toxin type A for upper-limb spasticity after stroke or traumatic brain injury. Compared with placebo, botulinum toxin type A treatment resulted
in decrease of muscle tone after week 4 (standardized mean difference [SMD], -0.98; 95% CI, -1.28 to -0.68; $I^2=66\%$, $p=0.004$), week 6 (SMD = -0.85; 95% CI, -1.11 to -0.59; $I^2=1.2\%$; $p=0.409$), week 8 (SMD = -0.87; 95% CI, -1.15 to -0.6; $I^2=0\%$, $p=0.713$), week 12 (SMD = -0.67; 95% CI, -0.88 to -0.46;$I^2=0\%$; $p=0.896$), and week 12 (SMD = -0.73; 95% CI, -1.21 to -0.24; $I^2=63.5\%$; $p=0.065$). A systematic review and meta-analysis by Baker and Pereira (2016) identified 25 RCTs that evaluated the efficacy of botulinum toxin type A for limb spasticity on reducing activity restriction and improving quality of life (QOL) outcomes. Reviewers reported pooled analysis for 6 RCTs that included upper- and lower-limb trials but were unable to pool studies for QOL measures. Evidence quality for the upper-limb was low/very low. Pooled results showed a significant increase in active function with botulinum toxin type A at 4 to 12 weeks for the upper-limb (SMD=0.32; 95% CI, 0.01 to 0.62; $p=0.04$) and these effects were maintained for up to 6 months (mean difference [MD], 1.87; 95% CI, 0.53 to 3.21; $p=0.006$). Reviewers reported no conclusion for efficacy in lower-limb or for QOL measures in either limb.

A Cochrane review of 4 RCTs (total N=441 participants) by Marques et al (2016) compared botulinum toxin type B with placebo in cervical dystonia. The primary efficacy outcome was overall improvement on any validated symptomatic rating scale. All trials evaluated the effect of a single treatment session using doses between 2500 U and 10,000 U. Compared with placebo, botulinum toxin type B was associated with an improvement of 14.7% (95% CI, 9.8% to 19.5%) in patients' baseline clinical status with a placebo-corrected reduction of 2.2 points (95% CI, 1.25 to 3.15 points) in the Toronto Western Spasmodic Torticollis Rating Scale at week 4 after injection.

Another Cochrane review of 3 RCTs by Duarte et al (2016) compared botulinum toxin type A with botulinum toxin type B in cervical dystonia. The primary efficacy outcome was improvement on any validated symptomatic rating scale, and the primary safety outcome was the proportion of participants with adverse events. All trials evaluated the effect of a single treatment session using multiple dosing regimens. Reviewers reported no difference between the 2 types of botulinum toxin in terms of overall efficacy or safety.

A systematic review by Dashtipour et al (2015) identified 16 RCTs and noncomparative controlled studies evaluating abobotulinumtoxinA (Dysport) in adults with upper-limb spasticity due to stroke. Total botulinum toxin dose ranged from 500 to 1500 U. Reviewers did not pool study findings, but did report that most studies found a statistically significant benefit of botulinum toxin for functioning (as measured by the Modified Ashworth Scale).
A systematic review and meta-analysis by Marsh et al (2014) identified 18 studies evaluating botulinum toxin type A for treatment of cervical dystonia; five were RCTs, and the remainder were observational studies. A pooled analysis found the mean duration of effect of botulinum toxin to be 93.2 days (95% CI, 91.8 to 94.6 days) using the fixed-effects model, and 95.2 days (95% CI, 88.9 to 101.4 days) using the random-effects model. Most studies included did not have control groups.

In a systematic review, Foley et al (2013) identified 16 RCTs comparing injection of botulinum toxin with placebo injections or a nonpharmacologic treatment of moderate-to-severe upper-extremity spasticity following stroke. Studies evaluated the impact of treatment on activity limitations. Ten trials (total N=1000 patients) had data suitable for pooling. In a pooled analysis of effect size, botulinum toxin was associated with a moderate treatment effect compared with other interventions (SMD=0.54; 95% CI, 0.35 to 0.71; p<0.001). In another systematic review, Baker et al (2013) pooled RCT data and found a statistically significant benefit of botulinum toxin type A for treating limb spasticity. Evidence was limited on botulinum toxin for spasticity-related pain.

This evidence review section is based on a TEC Assessment (1996, updated 2004) that focused on the use of botulinum toxin for the treatment of focal dystonia or spasticity, the American Academy of Neurology (AAN) 2008 assessment of movement disorders and spasticity, and additional controlled trials and systematic reviews identified by MEDLINE literature searches.

The AAN assessment concluded that the evidence was AAN level A (established as effective, should be done) for equinus varus deformity in children with cerebral palsy and AAN level B (probably effective, should be considered) for upper extremity, for adductor spasticity, and for pain control in conjunction with adductor-lengthening surgery in children with cerebral palsy. The evidence was rated level B for treatment of adult spasticity in the upper- and lower-limb for reducing muscle tone and improving passive function, but insufficient evidence to recommend an optimum technique for muscle localization at the time of injection. The evidence was rated level B for upper-limb focal dystonia but insufficient for lower-limb focal dystonia, and was rated level B for adductor laryngeal dystonia but insufficient for abductor laryngeal dystonia.

Post Stroke Related Spasticity
Wein et al (2018) reported on the results of a double-blind RCT that evaluated the efficacy and safety of onabotulinumtoxinA (Botox) in adults (N=468) with poststroke lower-limb spasticity. The primary end point was change in Modified Ashworth Scale score from baseline between
Botulinum Toxins

Policy # 00012
Original Effective Date: 01/28/2003
Current Effective Date: 08/14/2019

OnabotulinumtoxinA (Botox) and placebo arm at approximately 12-week intervals. Injections were into the ankle plantarflexors (onabotulinumtoxinA [Botox] 300 U into ankle plantarflexors; ≤100 U, optional lower-limb muscles). Of 468 enrolled, 413 (88%) completed the trial. At the end of blinded phase at 4 to 6 weeks, there were small but statistically significant improvements with onabotulinumtoxinA (Botox) during for the primary end point (onabotulinumtoxinA [Botox], -0.8; placebo, -0.6, p=0.01).

Wissel et al (2016) assigned 273 poststroke adults to a 22- to 34-week treatment with onabotulinumtoxinA (Botox) or placebo and subsequently open-label onabotulinumtoxinA (Botox) up to 52 weeks. End points included change in pain and responder analysis (defined as proportion of patients with baseline pain ≥4 achieving a ≥30% improvement in pain and a ≥50% improvement in pain interference with work at week 12). Mean pain reduction from baseline at week 12 was -0.77 (95% CI, -1.14 to -0.40) with onabotulinumtoxinA (Botox) compared with -0.13 (95% CI, -0.51 to 0.24; p<0.05) with placebo. Respective proportion of responders was 53.7% and 37.0%.

A double-blind RCT published by Gracies et al (2015) assigned 243 adults with a stroke or brain trauma in the last 5 months to a single injection of abobotulinumtoxinA (Dysport) 500 U (N=81) or 1000 U (N=81) or placebo (N=81). The primary end point was the change in muscle tone in the primary target muscle group from baseline to 4 weeks as measured by Modified Ashworth Scale (MAS). At both doses, abobotulinumtoxinA (Dysport) resulted in greater tone reduction as evidenced by statistically significant reduction in placebo-corrected MAS scores from baseline to week 4 (abobotulinumtoxinA [Dysport] 500 U group, -0.9; 95% CI -1.2 to -0.6; p<0.001; abobotulinumtoxinA [Dysport] 1000 U group, -1.1; 95% CI, -1.4 to -0.8; p<0.001 vs placebo).

Shaw et al (2011) randomized 333 patients with poststroke upper-limb spasticity to physical therapy plus abobotulinumtoxinA (Dysport) (N=170) or to physical therapy alone (N=163). The primary outcome, improved function at 1 month according to the Action Research Arm Test, did not differ significantly among groups. Improved function using Action Research Arm Test scores also did not differ significantly between groups at 3 or 12 months. Change in muscle tone, based on mean change in the Motor Assessment Scale score significantly favored the abobotulinumtoxinA (Dysport) group (-0.6) over the placebo group (-0.1) at 1 month (p<0.001), but not at 3 and 12 months.

Other RCTs have shown that botulinum toxin injection improves outcomes in patients with poststroke upper-limb spasticity.
Cerebral Palsy

Most trials that established the efficacy of abobotulinumtoxinA (Dysport) in treating focal spasticity in patients with cerebral palsy have been small. Delgado et al (2016) reported on a relatively larger RCT in which 249 cerebral palsy children with dynamic equinus foot deformity were randomized to abobotulinumtoxinA (Dysport) 10 or 15 U/kg per leg, or placebo. The primary outcome measure was change in MAS score from baseline to week 4. Of the 246 patients randomized, 226 completed the trial and analysis included 235 (98%) patients. Results showed that both doses of abobotulinumtoxinA (Dysport) resulted in greater improvement in placebo-corrected MAS scores (-0.49; 95% CI, -0.75 to -0.23; p<0.001; -0.38; (95% CI, -0.64 to -0.13; p=0.003 respectively).

Dystonia/Spasticity Summary

Multiple RCTs and systematic reviews with meta-analyses have supported the efficacy of botulinum toxin for treating dystonia and spasticity.

Strabismus

Strabismus is a condition in which the eyes are not in proper alignment.

A Cochrane review by Rowe and Noonan (2012) evaluated the literature on botulinum toxin for strabismus. Reviewers identified 4 RCTs, all of which were published in the 1990s. Three trials compared botulinum toxin injection with surgery, and one compared botulinum toxin injection with a noninvasive treatment control group. Among the trials that used surgery as a comparator, two found no statistically significant differences in outcomes between groups, and one found a higher rate of a satisfactory outcome in the surgery group (defined as <8 prism diopters). The trial comparing botulinum toxin with no intervention did not find a significant difference in outcomes in the 2 groups. Complications after botulinum toxin included transient ptosis and vertical deviation; combined complication rates ranged from 24% to 56% in the studies.

For patients who failed prior surgery, Tejedor and Rodriguez (1999) conducted a trial that included 55 children with strabismus who remained symptomatic after surgical alignment. Patients were randomized to a second surgery (28 patients) or botulinum toxin injection (N=27). Motor and sensory outcomes did not differ significantly in the 2 groups. For instance, at 3 years, 67.8% of children in the reoperation group and 59.2% of children in the botulinum toxin group were within 8 prism diopters of orthotropias (p=0.72). Lee et al (1994) randomized 47 patients with acute unilateral sixth nerve palsy to botulinum toxin treatment or a no treatment control group. The final
Botulinum Toxins

Policy # 00012
Original Effective Date: 01/28/2003
Current Effective Date: 08/14/2019

recovery rate was 20 (80%) of 25 in the botulinum toxin group and 19 (86%) of 22 in the control group.

Strabismus Summary
Several RCTs from the 1990s have reported mixed results on the efficacy of botulinum toxin for strabismus. This evidence has not established that botulinum toxin improves outcomes for patients with strabismus. However, treatment for strabismus is a noninvasive alternative to surgery.

Blepharospasm
Blepharospasm is a progressive neurologic disorder characterized by involuntary contractions of the eyelid muscles; it is classified as a focal dystonia.

Dashtipour et al (2015) reported on the results of a systematic review that evaluated 5 RCTs (374 patients with blepharospasm, 172 patients with hemifacial spasm) of abobotulinumtoxinA (Dysport). All trials showed statistically significant benefits for the treatment of blepharospasm and hemifacial spasm.

RCTs have evaluated onabotulinumtoxinA (Botox), abobotulinumtoxinA (Dysport), and incobotulinumtoxinA (Xeomin) for the treatment of blepharospasm and found these agents to be effective at improving symptoms. No RCTs evaluating rimabotulinumtoxinB (Myobloc) for treating blepharospasm were identified in literature searches.

Blepharospasm Summary
Multiple RCTs and a systematic review have found that botulinum toxin injection is an effective treatment of blepharospasm.

Headache
Botulinum toxin for treatment of pain from migraine and from chronic tension-type headaches was addressed in a TEC Assessment (2004). The Assessment concluded that the evidence was insufficient for either indication. Because the placebo response rate is typically high in patients with headache, assessment of evidence focuses on randomized, placebo-controlled trials. More recent literature is discussed below, organized by type of headache. Recent studies have focused on frequency of headache as an outcome measure in addition to pain and headache severity.
Migraine Headaches

Migraines can be categorized by headache frequency. According to the Third Edition of the International Headache Classification (ICHD-3), migraine without aura (previously known as common migraine) is defined as at least 5 attacks per month meeting other diagnostic criteria. Chronic migraine is defined as attacks on at least 15 days per month for more than 3 months, with features of migraine on at least 8 days per month.

The Agency for Healthcare Research and Quality published a comparative effectiveness review, conducted by Shamliyan et al (2013), on preventive pharmacologic treatments for migraine in adults. The investigators identified 15 double-blind RCTs evaluating botulinum toxin for migraine prevention: 13 used onabotulinumtoxinA (Botox) and two used abobotulinumtoxinA (Dysport). In a meta-analysis of 3 RCTs, onabotulinumtoxinA (Botox) was more effective than placebo in reducing the number of chronic migraine episodes per month by at least 50% (RR=1.5; 95% CI, 1.2 to 1.8). In another pooled analysis, onabotulinumtoxinA (Botox) was associated with a significantly higher rate of treatment discontinuation due to adverse events than placebo (RR=3.2; 95% CI, 1.4 to 7.10). Five RCTs compared the efficacy of onabotulinumtoxinA (Botox) with another medication (topiramate or divalproex sodium). Findings were not pooled, but, for the most part, there were no statistically significant differences in outcomes between the 2 drugs.

Jackson et al (2012) conducted a meta-analysis of RCTs on botulinum toxin type A for the prophylactic treatment of headache in adults; the analysis addressed migraines and other types of headache. Reviewers included RCTs that were at least 4 weeks in duration, had reduction in headache frequency or severity as an outcome, and used patient-reported outcomes. Reviewers categorized eligibility criteria as addressing episodic (<15 headaches per month) or chronic headache (≥15 days per month). Ten trials on episodic migraine and 7 trials on chronic migraine were identified. All trials on episodic migraine and 5 of 7 trials on chronic migraine were placebo-controlled; the other 2 trials compared botulinum toxin injections with oral medication. A pooled analysis for chronic migraine (5 trials) found a statistically significantly greater reduction in the frequency of headaches per month with botulinum toxin than with a control intervention (absolute difference, -2.30; 95% CI, -3.66 to -0.94). In contrast, in a pooled analysis of episodic migraine (9 trials), there was no statistically significant difference between groups in the change in monthly headache frequency (absolute difference, -0.05; 95% CI, -0.25 to 0.36).
Previously, Shuhendler et al (2009) conducted a meta-analysis of trials on botulinum toxin for treating episodic migraines. Reviewers identified 8 randomized, double-blind, placebo-controlled trials evaluating the efficacy of botulinum toxin type A injections. A pooled analysis of the main study findings found no significant differences between the botulinum toxin type A and placebo groups in change in the number of migraines per month. After 30 days of follow-up, the SMD was -0.06 (95% CI, -0.14 to 0.03; p=0.18). After 90 days, the SMD was -0.05 (95% CI, -0.13 to 0.04; p=0.28). A subgroup analysis examining trials using low-dose botulinum toxin type A (<100 U) compared with trials using high-dose botulinum toxin type A (≥100 U) did not find a statistically significant effect of botulinum toxin type A compared with placebo in either stratum.

A pair of multicenter RCTs that evaluated onabotulinumtoxinA (Botox) for chronic migraine was published in 2010. The trials reported findings from the double-blind portions of the industry-sponsored PREEMPT (Phase 2 Research Evaluating Migraine Prophylaxis Therapy) trials 1 and 2. Trial designs were similar. Both included a 24-week double-blind, placebo-controlled phase prior to an open-label phase. The trials recruited patients meeting criteria for migraine and excluded those with complicated migraine. To be eligible, patients had to report at least 15 headache days during the 28-day baseline period, each headache lasting at least 4 hours. At least 50% of the headaches had to be definite or probable migraine. The investigators did not require that the frequent attacks occur for more than 3 months or exclude patients who overused pain medication, two of the ICHD-2 criteria for chronic migraine. Eligible patients were randomized to 2 cycles of onabotulinumtoxinA (Botox) injections 155 U or placebo, with 12 weeks between cycles. Randomization was stratified by frequency of acute headache pain medication used during baseline and whether patients overused acute headache pain medication. (Medication overuse was defined as baseline intake of simple analgesics on at least 15 days, or other medications for at least 10 days, and medication use at least 2 days per week.)

The primary end point in PREEMPT 1 was mean change from baseline in frequency of headache episodes for 28 days ending with week 24. A headache episode was defined as a headache lasting at least 4 hours. Prespecified secondary outcomes included, among others, change in frequency of headache days (calendar days in which pain lasted at least 4 hours), migraine days (calendar days in which a migraine lasted at least 4 hours), and migraine episodes (migraine lasting at least 4 hours). Based on availability of data from PREEMPT 1 and other factors, the protocol of the PREEMPT 2 trial was amended (after study initiation but before unmasking) to make frequency of headache days the primary end point. The trialists noted that, to control for potential type I error related to changes
to the outcome measures, a more conservative p value (0.01) was used. Several QOL measures were also used in the trials, including the 6-item Headache Impact Test-6 (HIT-6) and the Migraine Specific Quality of Life Questionnaire (MSQ v.2). Key findings of both trials are described below.

PREEMPT 1 randomized 679 patients. Mean number of migraine days during baseline was 19.1 in each group. The mean number of headache episodes during the 28-day baseline period was 12.3 in the onabotulinumtoxinA (Botox) group and 13.4 in the placebo group. Approximately 60% of patients had previously used at least 1 prophylactic medication and approximately 68% overused headache pain medication during baseline. A total of 296 (87%) of 341 patients in the onabotulinumtoxinA (Botox) group and 295 (87%) of 338 patients in the placebo group completed the 24-week double-blind phase. The primary outcome (change from baseline in frequency of headache episodes over a 28-day period) did not differ significantly between groups. The number of headache episodes decreased by a mean of 5.2 in the onabotulinumtoxinA (Botox) group and 5.3 in the placebo group (p=0.344). Similarly, the number of migraine episodes did not differ significantly. There was a decrease of 4.8 migraine episodes in the onabotulinumtoxinA (Botox) group and of 4.9 in the placebo group (p=0.206). In contrast, there was a significantly greater decrease in the number of headache days and the number of migraine days in the onabotulinumtoxinA (Botox) group than in the placebo group. The decrease in frequency of headache days was 7.8 in the onabotulinumtoxinA (Botox) group and 6.4 in the placebo group, a difference of 1.4 headache days per 28 days (p=0.006). Corresponding numbers for migraine days were 7.6 and 6.1, respectively (p=0.002). There was significantly greater improvement in QOL in the onabotulinumtoxinA (Botox) group vs the placebo group. The proportion of patients with severe impact of headaches (i.e., HIT-6 score, ≥60) in the onabotulinumtoxinA (Botox) group decreased from 94% at baseline to 69% at 24 weeks; in the placebo group, it decreased from 95% at baseline to 80%, a between-group difference of 11% (p=0.001). The authors did not report MSQ scores, but stated that there was statistically significant greater improvement in the 3 MSQ role function domains at week 24 (restrictive, p<0.01; preventive, p=0.05; emotional, p<0.002). Adverse events were experienced by 203 (60%) patients in the onabotulinumtoxinA (Botox) group and 156 (47%) patients in the placebo group. Eighteen (5%) patients in the onabotulinumtoxinA (Botox) group and 8 (2%) in the placebo group experienced serious adverse events. Treatment-related adverse events were consistent with the known safety profile of onabotulinumtoxinA (Botox).

PREEMPT 2 randomized 705 patients. Mean number of migraine days during baseline period was 19.2 in the onabotulinumtoxinA (Botox) group and 18.7 in the placebo group. Mean number of
headache episodes during the 28-day baseline period was 12.0 in the onabotulinumtoxinA (Botox) group and 12.7 in the placebo group. Approximately 65% of patients had previously used at least 1 prophylactic medication and approximately 63% overused headache pain medication during baseline. A total of 311 (90%) of 347 patients in the onabotulinumtoxinA (Botox) group and 334 (93%) of 358 patients in the placebo group completed the 24-week, double-blind phase. The primary outcome, change from baseline frequency of headache days over a 28-day period (a different primary outcome from PREEMPT 1), differed significantly between groups and favored onabotulinumtoxinA (Botox) treatment. The number of headache days decreased by a mean of 9.0 in the onabotulinumtoxinA (Botox) group and 6.7 in the placebo group, an absolute difference of 2.3 days per 28 days (p<0.001). Mean number of migraine days also decreased significantly, more in the onabotulinumtoxinA (Botox) group (8.7) than in the placebo group (6.3; p<0.001). Unlike PREEMPT 1, there was a significantly greater decrease in headache episodes in PREEMPT 2 in the onabotulinumtoxinA (Botox) group (5.3) than in the placebo group (4.6; p=0.003). Change in frequency of migraine episodes was not reported.

Similar to PREEMPT 1, QOL measures significantly improved in the onabotulinumtoxinA (Botox) group. The proportion of patients reporting that their headaches had a severe impact (score of at least 60 on the HIT-6) decreased in the onabotulinumtoxinA (Botox) group from 93% at baseline to 66% at 24 weeks; in the placebo group, it decreased from 91% at baseline to 77%. There was a between-group difference of 10% (p=0.003). The trialists reported statistically significantly greater improvement in the 3 MSQ role function domains at week 24 (restrictive, preventive, emotional, p<0.001 for each domain). Adverse events were experienced by 226 (65%) patients in the onabotulinumtoxinA (Botox) group and 202 (56%) patients in the placebo group. Fifteen (4%) patients in the onabotulinumtoxinA (Botox) group and 8 (2%) in the placebo group experienced serious adverse events. As in PREEMPT 1, treatment-related adverse events in PREEMPT 2 were consistent with the known safety profile of onabotulinumtoxinA (Botox).

Also published was a pooled analysis of findings from the PREEMPT 1 and 2 trials; this analysis by Dodick et al (2010) was also industry-sponsored. There were 688 patients in the onabotulinumtoxinA (Botox) group and 696 in the placebo group in the pooled analysis of outcomes at week 24. In the combined analyses, there was a significantly greater reduction in change from baseline in frequency of headache days, migraine days, headache episodes, and migraine episodes in the onabotulinumtoxinA (Botox) group than in the placebo group. For example, the pooled change in mean frequency of headache days was 8.4 in the onabotulinumtoxinA (Botox) group and 6.6 in
the placebo group (p<0.001). Mean difference in number of headache days over a 28-day data collection period was 1.8 (95% CI, 1.13 to 2.52). The pooled change in frequency of headache episodes was 5.2 in the onabotulinumtoxinA (Botox) group and 4.9 in the placebo group, a relative difference of 0.3 episodes (95% CI, 0.17 to 1.17; p=0.009). Between-group differences, though statistically significant, were relatively small and might not be clinically meaningful. In the pooled analysis, the trialists also reported the proportion of patients with at least a 50% decrease from baseline in the frequency of headache days at each time point (every 4 weeks from week 4 to week 24). For example, at week 24, the proportion of participants with at least a 50% reduction in headache days was 47.1% in the onabotulinumtoxinA (Botox) group and 35.1% in the placebo group. In contrast, the difference in the proportion of patients experiencing at least a 50% reduction in headache episodes did not differ significantly between groups at 24 weeks or at most other time points, with the exception of week 8. The published report did not report the proportion of patients who experienced at least a 50% reduction in migraine days or migraine episodes. The pooled analysis showed statistically significant differences for the change in proportion of patients with severe headache impact as assessed using the HIT-6 and change in MSQ domains. Pooled results of PREEMPT studies at 56 week also reported that repeated treatment (≤5 cycles) of onabotulinumtoxinA (Botox) was effective, safe, and well-tolerated in adults with chronic migraine.

Several issues are worth noting about the methods and findings of the PREEMPT studies. There was a statistically significant difference in headache episodes in PREEMPT 2 but not PREEMPT 1 (for which it was the primary outcome); the primary outcome was changed after initiation of PREEMPT 1. Moreover, one of the main secondary outcomes in PREEMPT 1 (change in the number of migraine episodes) was not reported in the second trial; the trialists did not discuss this omission. In addition, the individual studies did not include threshold response to treatment (e.g., at least a 50% reduction in headache or migraine frequency) as a key outcome. The pooled analysis did report response rates, but as secondary efficacy outcomes.

Most patients in both trials fulfilled criteria for medication overuse headache, and therefore many might have been experiencing secondary headaches rather than chronic migraines. If patients had secondary headaches, detoxification alone might have been sufficient to change their headache pattern to an episodic one. The clinical relevance of less than a 2-day difference in reduction in number of headache days is uncertain, though consistent with reductions previously reported in several medication trials.
Another RCT that assessed use of botulinum toxin for treating chronic migraine was published by Cady et al (2011). The trial included patients who met ICHD-2 criteria for chronic migraine. Patients were randomized to treatment with onabotulinumtoxinA (Botox) (N=29) or topiramate (N=30). At the 12-week follow-up, the end of the double-blind phase of the trial, treatment effectiveness did not differ significantly between groups. For the primary end point (Physician Global Assessment at week 12), physicians noted improvement in 19 (79%) of 24 patients in the onabotulinumtoxinA (Botox) group and 17 (71%) of 24 patients in the topiramate group; 9 patients (15%) were not available for this analysis.

Migraine Headaches Summary
For chronic migraine, a meta-analysis of RCTs found that onabotulinumtoxinA (Botox) was more effective than placebo in reducing the number of chronic migraine episodes per month, although it was also associated with a significantly higher rate of treatment discontinuation due to adverse events than placebo.

Non-Migraine Headaches
Medication Overuse Headaches
According to the ICHD-2 (and ICHD-3), the diagnostic classification of medication overuse headache differs from chronic migraine. Silberstein et al (2013) published a subanalysis of pooled PREEMPT data limited to patients with headache medication overuse at baseline. A total of 904 patients who indicated they had medication overuse headache were included; 445 were randomized to the botulinum toxin group and 459 to the placebo group. At the end of week 24, there was a significantly greater reduction in outcomes, including headache days, headache episodes, and moderate-to-severe headache days, in the botulinum toxin group than in the placebo group. For example, the number of headache days per month decreased by a mean of 8.2 in the botulinum toxin group and 6.2 in the placebo group (p<0.001). This is a single analysis of RCT data and provides insufficient evidence that botulinum toxin is effective for patients with the diagnosis of medication overuse headache.

Tension Headache
The meta-analysis by Jackson et al (2012), discussed above, identified 7 RCTs evaluating botulinum toxin for treating chronic tension-type headaches; all were placebo-controlled. A pooled analysis of these 7 studies did not find a statistically significant difference in change in the monthly number of headache days in the botulinum toxin group vs the placebo group (difference, -1.43; 95% CI, -3.13
Botulinum Toxins

Policy #: 00012
Original Effective Date: 01/28/2003
Current Effective Date: 08/14/2019

to 0.27). The largest trial (Silberstein et al [2006]) included 300 patients randomized to 1 of 4 doses of botulinum toxin or placebo. Overall, there was no statistically significant difference between the botulinum toxin groups and the placebo group in mean change from baseline to 90 days in number of headache days per month.

Chronic Daily Headache

Although chronic daily headache is not recognized in the ICHD, it is commonly defined to include different kinds of chronic headache (e.g., chronic or transformed migraine, daily persistent headache). It may also include chronic tension-type headache (addressed above). The meta-analysis by Jackson (2012) identified 3 RCTs comparing botulinum toxin type A with placebo in patients having at least 15 headaches per month. A pooled analysis of data from these 3 trials found a significantly greater reduction in the number of headaches per month with botulinum toxin than with placebo (absolute difference, -2.06; 95% CI, -3.56 to -0.56). Individually, only one (Ondo et al [2004]) of the 3 trials found a statistically significant benefit with botulinum toxin treatment. Ondo included 60 patients, some with chronic migraines and chronic tension-type headache. The Ondo trial found significantly greater reduction in the number of headache-free days over weeks 8 to 12 with botulinum toxin than with placebo (p<0.05), but there was no statistically significant between-group difference in reduction in headache-free days over the entire 12-week study period (p=0.07). The other 2 trials evaluated more patients: 355 in Mathew et al (2005) and 702 in Silberstein et al (2005). Neither found a statistically significant difference in the reduction in the number of headache days per month with botulinum toxin. The available evidence from RCTs is conflicting and insufficient for conclusions.

Cluster Headache

No controlled trials were identified for cluster headache.

Cervicogenic Headache

A Cochrane review of treatment of mechanical neck disorders, conducted by Peloso et al (2007), included 6 RCTs (total N=273 patients) assessing botulinum toxin and placebo for chronic neck disorders with or without radicular findings or headache. A meta-analysis of 4 studies (n=139 patients) for pain outcomes found no statistically significant results. Reviewers concluded that a range of doses did not show significant differences compared with placebo or other comparators.

©2019 Blue Cross and Blue Shield of Louisiana
Blue Cross and Blue Shield of Louisiana is an independent licensee of the Blue Cross and Blue Shield Association and incorporated as Louisiana Health Service & Indemnity Company.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without permission from Blue Cross and Blue Shield of Louisiana.
Linde et al (2011) published a double-blind, placebo-controlled crossover study that included 28 patients with treatment-resistant cervicogenic headache. Patients were randomized to botulinum toxin type A or placebo; there was at least an 8-week period between treatments. The trial did not find significant differences between active and placebo treatment in the primary outcome, reduction in the number of days with moderate-to-severe headache. Three other RCTs, published between 2000 and 2008, randomized patients with chronic, whiplash-related headache to botulinum toxin type A treatment or placebo. One trial reported trends toward improvement with treatment for various outcomes; most were not statistically significant. Another reported no significant differences for several pain-related outcomes. The other reported a significant improvement in pain with treatment, but trial design was flawed because the placebo group reported less pain at baseline.

Non-Migraine Headache Summary
For patients with an episodic pattern of migraine (i.e., <15 episodes per month), the published evidence does not suggest that botulinum toxin improves net health outcome for patients. For tension headache, RCTs and systematic reviews do not indicate that botulinum toxin improves outcomes. For other headache types, the evidence is inconclusive to confirm efficacy.

Esophageal Achalasia
Esophageal achalasia is a primary motor disorder characterized by abnormal lower esophageal sphincter relaxation.

A Cochrane review by Leyden et al (2014) identified 7 RCTs (total N=178 participants) on the treatment of primary esophageal achalasia with botulinum toxin or endoscopic pneumatic dilation. A pooled analysis of data from 5 trials did not find a statistically significant difference in the rate of initial remission with pneumatic dilation vs botulinum toxin injection (RR=1.11; 95% CI, 0.97 to 1.27). Remission at 6 and 12 months favored the pneumatic dilation group. No serious adverse events were reported after botulinum toxin injection; however, there were 3 cases of perforation after pneumatic dilation.

A randomized controlled trial by Annese and colleagues in Italy with 78 patients found 100U of onabotulinumtoxinA (Botox) and 250U of abobotulinumtoxinA (Dysport) to have comparable efficacy for treating esophageal achalasia.
Esophageal Achalasia Summary

A systematic review of RCTs reported similar initial remission rates of esophageal achalasia after botulinum toxin injection and pneumatic dilation. Pneumatic dilation was associated with higher longer term remission rates but is more invasive, and perforation has been reported.

Sialorrhea (Drooling) Associated with Parkinson Disease

Several RCTs have evaluated botulinum toxin injections in patients with Parkinson disease. For example, Lagalla et al (2006) randomized 32 patients with Parkinson disease to placebo or botulinum toxin type A; evaluation at 1 month post-injection resulted in significant improvements compared with placebo in drooling frequency, saliva output, and familial and social embarrassment. Dysphagia scores were not significantly improved. Moreover, Ondo et al (2004) randomized 16 patients with Parkinson disease to botulinum toxin type B or placebo. The botulinum toxin group had significantly better outcomes than the placebo group at 1 month on 4 drooling outcomes. Groups did not differ on salivary gland imaging or on a dysphagia scale. Mancini et al (2003) assigned 20 patients with Parkinson disease to injections of either a saline placebo or botulinum toxin type A. The treatment group had significantly better outcomes than the placebo group on a drooling scale at 1 week; the effect disappeared by 3 months.

Sialorrhea Section Summary

RCTs have consistently found benefit of botulinum toxin injection on sialorrhea in patients with Parkinson disease.

Sialorrhea NOT Associated with Parkinson Disease

Several systematic reviews have evaluated botulinum toxin for treating sialorrhea in people with conditions other than Parkinson disease. Squires et al (2014) reviewed the research on botulinum toxin injections for drooling in patients with amyotrophic lateral sclerosis/motor neuron disease. Reviewers included RCTs and controlled and uncontrolled observational studies. They identified 12 studies, of which 8 had no control groups. There were 2 small RCTs, each with fewer than 20 patients. Sample sizes in the non-RCTs ranged from 5 to 26 patients. Due to heterogeneity, study findings were not pooled. Only one of the 2 RCTs reported drooling outcomes; it found a significantly greater reduction in saliva volume with botulinum toxin than with placebo at 2 weeks. Rodwell et al (2012) published a systematic review evaluating botulinum toxin injections in the salivary gland to treat sialorrhea in children with cerebral palsy and neurodevelopment disability. Reviewers identified 5 RCTs; trial sample sizes ranged from 6 to 48 participants. One of the RCTs
Botulinum Toxins

Policy # 00012
Original Effective Date: 01/28/2003
Current Effective Date: 08/14/2019

(N=6) was terminated due to adverse events. In a pooled analysis of data 4 weeks postintervention in 3 RCTs, the mean score on the Drooling Frequency and Severity Scale was significantly lower in children who received botulinum toxin injections than a control intervention (MD = -2.71 points; 95% CI, -4.82 to -0.60; p<0.001). The clinical significance of this difference in Drooling Frequency and Severity Scale scores is unclear. Data were not pooled for other outcomes. The systematic review also identified 11 prospective case series. The rate of adverse events associated with botulinum toxin injection in the RCTs and case series ranged from 2% to 41%. Dysphagia occurred in 2 (33%) of the 6 participants in an RCT terminated early and in 2 (2%) of 126 patients in a case series. There was 1 reported chest infection, 1 case of aspiration pneumonia, and, in 1 case series, 6 (5%) of 126 patients experienced an increased frequency of pulmonary infections. In 7 studies, there were reports of patients with difficulty swallowing and/or chewing following botulinum toxin treatment.

Gonzalez et al (2017) reported the results of an RCT in which 40 adults with cerebral palsy were randomized to onabotulinumtoxinA (Botox) or observation. The trial had greater than 80% power to detect a 39% difference in the proportion of patients who achieved at least a 50% reduction in drooling quotient. The primary efficacy outcome was drooling quotient. This quotient, measured as a proportion, is a semi-quantitative method that assesses the presence of newly formed saliva on the lips every 15 seconds with 40 observations in 10 minutes, expressed as a percentage based on the ratio between the number of observed drooling episodes and the total number of observations. The proportion of patients who achieved at least a 50% reduction in drooling quotient in the treated group vs control after 8 weeks and 80 weeks was 45% vs 0.0% (p=0.001) and 20% vs 0% (p=0.106). While the treatment effect was large, the trial did not use a placebo group and was unblinded.

A large RCT on botulinum toxin for treating sialorrhea in children with cerebral palsy was published by Reid et al (2008). Forty-eight children with cerebral palsy (n=31) and other neurologic disorders (n=17) were randomized to a single injection of botulinum toxin type A 25 U compared with no treatment. Drooling was assessed by using the Drooling Impact Scale. Scores differed significantly between groups at 1 month, and a beneficial effect of botulinum toxin injection remained at 6 months.

A retrospective review by Chan et al (2013) focused on the long-term safety of botulinum toxin type A injection for treating sialorrhea in children. Reviewers included 69 children; 47 (68%) had cerebral palsy. Children received their first injection of botulinum toxin type A at a mean age of 9.9 years; mean follow-up was 3.1 years. During the study period, the children received a total of 120
botulinum toxin injections. Complications occurred in 19 (28%) of 69 children and in 23 (19%) of 120 injections. Fifteen of 23 complications were minor, including 6 cases of dysphagia. There were 8 major complications: 3 cases of aspiration pneumonia, 2 cases of severe dysphagia, and 3 cases of loss of motor control of the head. Complications were associated with 5 hospitalizations and 2 cases of nasogastric tube placement.

Sialorrhea NOT Associated with Parkinson Disease Summary
There is evidence of improvement as measured on drooling scales following botulinum toxin injections in children with cerebral palsy. The American Academy for Cerebral Palsy and Developmental Medicine includes botulinum toxin use in their sialorrhea treatment pathway. The evidence on botulinum toxin for treating sialorrhea in patients with amyotrophic lateral sclerosis/motor neuron disease is inconclusive due to the paucity of controlled studies, small sample sizes of available studies, and limited reporting of drooling outcomes.

Internal Anal Sphincter Achalasia
Internal anal sphincter (IAS) achalasia is a defecation disorder in which the internal anal sphincter is unable to relax. Symptoms include severe constipation and soiling.

A meta-analysis of studies on treatment of IAS achalasia was published by Friedmacher and Puri (2012). Reviewers only identified 2 prospective case series and 14 retrospective case series (total N=395 patients) of IAS achalasia. Most patients (229/395 [58%]) in the series were treated with posterior IAS myectomy and 166 (42%) were treated with intrasphincteric botulinum toxin injection. A meta-analysis of data from the observational studies found that regular bowel movements were more frequent after myectomy (odds ratio [OR], 0.53; 95% CI, 0.29 to 0.99; p=0.04). Moreover, the rate of transient fecal incontinence was significantly higher after botulinum toxin injection (OR=0.07; 95% CI, 0.01 to 0.54; p<0.01) and the rate of subsequent surgical intervention was higher after botulinum toxin injection (OR=0.18; 95% CI, 0.07 to 0.44; p<0.001). Other outcomes, including continued use of laxatives or rectal enemas and overall complication rates, did not differ between treatments.

Emile et al (2016) reported on the results of a systematic review that assessed 7 studies comprising 189 patients with a follow-up period greater than 6 months in each study. Of the 7 studies, 2 were RCTs and the others comparative and observational studies. Both RCTs were single site from the same author group and conducted in Egypt, enrolling 15 and 24 patients, respectively. Improvement
was defined as patients returning to their normal habits. The first RCT used biofeedback and the other used surgery as the comparator. In the first RCT, 50% of individuals in the biofeedback group reported improvement initially at 1 month but it dropped down to 25% by the end of year. The respective proportions of patients in the botulinum toxin arm were 70.8% and 33.3%. In the second RCT, surgery improved outcomes in all patients at 1 month but that percentage dropped to 66.6% at 1 year. The respective proportions of patients in the botulinum toxin arm were 87% and 40%, respectively. While these results would suggest temporary improvement, methodologic limitations, including small sample size and lack of blinded assessment, limit the interpretation of these RCTs.

Internal Anal Sphincter Achalasia Summary

There is a lack of high-quality RCTs evaluating botulinum toxin injection as a treatment of IAS. A meta-analysis of observational data and a systematic review suggested that posterior IAS myectomy results in greater improvements in health outcomes than botulinum toxin injections.

Anal Fissure

Chronic anal fissure is a tear in the lower half of the anal canal that is maintained by contraction of the IAS and is treated surgically with an internal sphincterotomy. Because the anal sphincter contraction could be characterized as a dystonia, botulinum toxin is a logical medical approach.

A systematic review by Yiannakopolou (2012) identified 2 RCTs comparing botulinum toxin with placebo, 1 RCT comparing botulinum toxin with lidocaine pomme, 5 RCTs comparing botulinum toxin with nitrates, and 8 RCTs comparing botulinum toxin with surgery. A meta-analysis was not performed due to heterogeneity among studies. The author noted that the studies tended to be small and of short duration, and that the superiority of botulinum toxin over surgery had not been demonstrated. However, because this minimally invasive option can be repeated, it is a reasonable option prior to surgery.

Brisinda et al (2007) conducted a trial and reported 92% healing rates for botulinum toxin type A and 70% for nitroglycerin ointment (p<0.001). Another trial by Brisinda et al (2004) found that the efficacy and tolerability of onabotulinumtoxinA (Botox) and abobotulinumtoxinA (Dysport) to treat anal fissures were similar. Brisinda et al (1999) compared the results of nitroglycerin ointment with botulinum toxin type A in a randomized trial of 50 patients. After 2 months, 96% of the fissures were healed in the botulinum group compared with 60% in the nitroglycerin group.
Botulinum Toxins

Policy # 00012
Original Effective Date: 01/28/2003
Current Effective Date: 08/14/2019

Maria et al (1998) randomized 30 patients with chronic anal fissure to 2 injections of botulinum toxin type A, on either side of the fissure, or 2 injections of saline. After 2 months, 11 (73%) patients in the treated group and 2 (13%) patients in the control group had healed fissures (p=0.003); 13 (87%) patients in the treated group and 4 (26%) in the control group had symptomatic relief (p=0.003). Four patients in the treated group were later retreated. No relapses occurred during an average of 16 months of follow-up.

Others have reported both supportive and contradictory data from randomized trials comparing the same treatments. RCTs of botulinum toxin vs sphincterotomy, and a meta-analysis of these studies, have reported significantly higher healing rates with sphincterotomy, but authors concluded that botulinum toxin was a viable first option for patients who are not good surgical candidates or who want to minimize the likelihood of incontinence.

Anal Fissure Summary
There is evidence on botulinum toxin for treatment of anal fissure from numerous small RCTs. Botulinum toxin has not been found to have better outcomes than surgery, but studies have found that healing rates after botulinum toxin are reasonably high and that it is a less invasive than surgery.

Overactive Bladder and Neurogenic Detrusor Overactivity
Drake et al (2017) reported on the results of a network meta-analysis of 56 RCTs that compared the efficacy of onabotulinumtoxinA (Botox), mirabegron, and anticholinergics in adults with idiopathic OAB. While all treatments were more efficacious than placebo after 12 weeks, patients who received onabotulinumtoxinA (Botox) 100 U reported the greatest reductions in urinary incontinence episodes, urgency episodes, and micturition frequency, and the highest odds of achieving decreases of 100% and 50% or greater from baseline in urinary incontinence episodes per day. The exclusion of studies with a high risk of bias had little impact on the conclusions. Freemantle et al (2016) also reported on the results of a network meta-analysis of 19 RCTs comparing onabotulinumtoxinA (Botox), mirabegron, anticholinergic drugs, or placebo. Both onabotulinumtoxinA (Botox) and mirabegron were more efficacious than placebo at reducing the frequency of urinary incontinence, urgency, urination, and nocturia. OnabotulinumtoxinA (Botox) was more efficacious than mirabegron (50 mg and 25 mg) in completely resolving daily episodes of urinary incontinence and urgency and in reducing the frequency of urinary incontinence, urgency, and urination.
A network meta-analysis by Cheng et al (2016) assessed 1915 patients with neurogenic detrusor overactivity from 6 RCTs. Using the mean number of urinary incontinence episodes per week as the primary outcome measure, reviewers reported that treatment with onabotulinumtoxinA (Botox) 200 U and 300 U compared with placebo reduced the mean number of urinary incontinence episodes at week 6 by 10.72 (95% CI, -13.4 to -8.04; p<0.001) and -11.42 (95% CI, -13.91 to -8.93; p<0.001), respectively. Treatment with onabotulinumtoxinA (Botox) was associated with greater frequency of urinary tract infections (RR=1.47; 95% CI, 1.29 to 1.67; p<0.001), urinary retention (RR=5.58, 95% CI 3.53 to 8.83; p<0.001), hematuria (RR=1.70; 95% CI, 1.01 to 2.85; p=0.05), and muscle weakness (RR=2.59; 95% CI, 1.36 to 4.91; p=0.004).

Cui et al (2015) identified 6 double-blind RCTs comparing botulinum toxin type A with placebo for treating patients with idiopathic OAB. In a pooled analysis of 3 studies, patients treated with botulinum toxin were significantly more likely to be incontinence-free at the end of the study (OR=4.89; 95% CI, 3.11 to 7.70). Moreover, a pooled analysis of 5 studies found significantly greater reduction in the number of incontinence episodes per day in the group treated with botulinum toxin (SMD = -1.68; 95% CI, -2.06 to -1.31). Cui et al (2013) also published another systematic review evaluating botulinum toxin type A for OAB. Previously, Duthie et al (2011) published a Cochrane review of RCTs evaluating botulinum toxin injections for patients with idiopathic or neurogenic OAB. Reviewers identified 19 trials that compared treatment using botulinum toxin with placebo or another intervention. Two studies included botulinum toxin type B; the remainder included botulinum toxin type A. Outcomes varied, which made it difficult to pool findings. A pooled analysis of 3 trials found change in urinary frequency episodes at 4 to 6 weeks a significantly better outcome with botulinum toxin injection than with placebo (MD = -6.50; 95% CI, -8.92 to -4.07). A pooled analysis of 3 trials on change in incontinence episodes at 4 to 6 weeks also found a significantly greater improvement with botulinum toxin (MD = -1.58; 95% CI, -2.16 to -1.01).

Other systematic reviews have included both controlled and uncontrolled studies. A systematic review by Soljanik (2013) identified 28 studies evaluating onabotulinumtoxinA (Botox) for the treatment of neurogenic detrusor overactivity or neurogenic OAB; 6 studies were RCTs. The reviewer reported that studies with comparative data found superior outcomes with onabotulinumtoxinA (Botox) compared with placebo. Data from the RCTs were not pooled. Serious adverse events were not reported. However, adverse events after intradetrusor botulinum toxin injection included postvoid residual urine (50%), urinary retention (23.7%), and urinary tract
infection (UTI; 16.7%). Also, Mehta et al (2013) identified 14 studies evaluating botulinum toxin type A for treating neurogenic detrusor overactivity after spinal cord injury; only one was an RCT. Studies tended to have large effect sizes (>0.8) for outcomes including bladder capacity and reflex detrusor volume. Rates of incontinence episodes decreased after treatment with botulinum toxin type A from 23% to 1.3% per day. Previously, Karsenty et al (2008) identified 18 studies evaluating botulinum toxin type A to treat patients who were refractory to anticholinergics. Most studies reported statistically significant improvements in clinical and urodynamic outcomes, without major adverse events.

Representative large, double-blind RCTs are described below. Herschorn et al (2017) reported on the results of a double-blind RCT that compared the efficacy and safety of onabotulinumtoxinA (Botox) or solifenacin vs placebo in patients with OAB, urinary incontinence, and an inadequate response to or were intolerant of an anticholinergic. The primary end point included change from baseline in the number of urinary incontinence episodes per day and the proportion of patients with a 100% reduction (dry) in the number of incontinence episodes per day. While both onabotulinumtoxinA (Botox) and solifenacin fared better than placebo in terms of change from baseline in incontinence episodes per day (-3.19 or -2.56 vs -1.33; both p<0.001), the incontinence reduction was significantly greater for onabotulinumtoxinA (Botox) vs solifenacin (p=0.022). At week 12, 33.8% (vs placebo p<0.001), 24.5% (vs placebo p=0.028), and 11.7% of patients receiving onabotulinumtoxinA (Botox), solifenacin, and placebo, respectively, were dry.

Nitti et al (2017) reported on the results of open-label RCT in which 557 patients with OAB, 3 or more urgency urinary incontinence episodes in 3 days, and 8 or more micturitions per day inadequately managed with anticholinergics were randomized to onabotulinumtoxinA (Botox) 100 U or placebo. Coprimary end points were the change from baseline in the number of urinary incontinence episodes per day and the proportion of patients with a positive response on the Treatment Benefit Scale at posttreatment week 12. OnabotulinumtoxinA (Botox) significantly decreased the daily frequency of urinary incontinence episodes vs placebo (-2.65 vs -0.87, p<0.001) and 22.9% vs 6.5% of patients became completely continent. A larger proportion of onabotulinumtoxinA (Botox) than placebo-treated patients reported a positive response on the Treatment Benefit Scale (60.8% vs 29.2%, p<0.001). Uncomplicated UTI was the most common adverse event.
Amundsen et al (2016) reported on the findings of a multicenter open-label RCT that assigned 381 women with refractory urgency urinary incontinence to cystoscopic intradetrusor injection of onabotulinumtoxinA (Botox) (n=192) or sacral neuromodulation (n=189). The primary outcome measure was change in the mean number of daily urgency urinary incontinence episodes from baseline to 6 months as measured with monthly 3-day diaries. Per protocol, analysis of data from 364 women showed that onabotulinumtoxinA (Botox) group had statistically significant greater reduction in the primary outcome compared with sacral neuromodulation group (-3.9 vs -3.3 episodes per day, p=0.01). However, the mean difference of 0.63 (95% CI, 0.13 to 1.14) was of uncertain clinical importance. Additionally, UTIs (35% vs 11%, respectively; risk difference, -23%; 95% CI, -33% to -13%; p<0.001) and need for transient self-catheterization (8% and 2% at 1 and 6 months in the onabotulinumtoxinA [Botox] group) were higher in the onabotulinumtoxinA (Botox) group than in the sacral neuromodulation group. Outcomes at 2 years of the open-label extension follow-up reported that no difference between the 2 therapies in reducing urgency urinary incontinence symptoms.

Nitti et al (2013) published data from an industry-supported study that included 557 patients with OAB and urinary incontinence inadequately controlled by anticholinergics. Patients were randomized to an intradetrusor injection of onabotulinumtoxinA (Botox) 100 U or placebo. At the 12-week follow-up, there was a statistically significantly greater reductions in the daily frequency of urinary incontinence episodes in the group that received botulinum toxin (-2.65) than in the placebo group (0.87; p<0.001). The other primary end point was the proportion of patients with a positive response at week 12 using the Treatment Benefit Scale. A significantly larger proportion of patients in the botulinum toxin group than in the placebo group reported a treatment benefit (60.8% vs 29.2%, p<0.001). A total of 22.9% of patients in the botulinum toxin group and 6.5% of patients in the placebo group became completely continent. In the first 12 weeks after injection, UTIs occurred in 43 (15.5%) of 278 patients in the botulinum toxin group and 16 (5.9%) of 272 patients in the placebo group. Urinary retention was reported by 15 (5.4%) patients in the botulinum toxin group and 1 (0.4%) patient in the placebo group. Between-group p values were not reported for adverse events.

In a prespecified subgroup analysis of data from this RCT and another placebo-controlled trial (Chapple et al [2013]), Sievert et al (2014) evaluated the efficacy of onabotulinumtoxinA (Botox) by number of anticholinergic therapies used. Patients had used a mean of 2.4 anticholinergic therapies before enrolling in the study. At week 12, reduction in the daily number of urinary
Botulinum Toxins

Policy # 00012
Original Effective Date: 01/28/2003
Current Effective Date: 08/14/2019

incontinence episodes was significantly greater in the onabotulinumtoxinA (Botox) group than in the control group, whether or not 1, 2, 3, or more prior anticholinergics had been used. Mean reduction in daily incontinence episodes for patients with 1 prior anticholinergic was 2.82 in the onabotulinumtoxinA (Botox) group and 1.52 in the placebo group (p<0.001); with 3 or more prior anticholinergics, it was 2.92 and 0.73, respectively (p<0.001). Results with a follow-up of 3.5 years (extension phase) reported durable and consistent mean reductions in urinary incontinence episodes ranging from -3.1 to -3.8.

An industry-supported RCT by Ginsberg et al (2012) included 416 patients with neurogenic detrusor activity associated with multiple sclerosis or spinal cord injury. Patients were randomized to injections with onabotulinumtoxinA (Botox) 200 U, onabotulinumtoxinA (Botox) 300 U, or placebo. Decrease in the mean number of weekly incontinence episodes at week 6 (the primary end point) was significantly greater in both active treatment groups (-21 in the 200-U group, -23 in the 300-U group) than in the placebo group (-9; p<0.001). Urinary retention was a common adverse event. Among patients who did not catheterize at baseline, 35% were in the 200-U group, 42% were in the 300-U group, and 10% were on placebo-initiated catheterization. A total of 329 (79%) of 416 patients completed the 52-week study; however, outcomes like the number of weekly incontinence episodes were not reported at 52 weeks.

Overactive Bladder and Neurogenic Detrusor Overactivity Summary
Numerous RCTs and observational data studies have reported improvements in outcomes following botulinum toxin treatment in patients with neurogenic detrusor overactivity or OAB unresponsive to anticholinergic medication. Despite the risk of adverse events, including urinary retention and UTI, evidence would suggest that botulinum toxin improves the net health outcome.

Detrusor Sphincter Dyssynergia
Systematic reviews have addressed treating detrusor sphincter dyssynergia with botulinum toxin injection. Mehta et al (2012) conducted a meta-analysis on botulinum toxin injection as a treatment of detrusor external sphincter dysfunction and incomplete voiding after spinal cord injury. Reviewers identified 2 RCTs and multiple uncontrolled studies. The RCTs included the de Seze study (discussed below) and a second study of 5 patients.

A systematic review by Karsenty et al (2006) reviewed trials of botulinum toxin type A injected into the urethral sphincter to treat different types of lower urinary tract dysfunction, grouped into
neurogenic detrusor sphincter dyssynergia and non-neurogenic obstructive sphincter dysfunction. In the former group, reviewers cited 10 small studies (N range, 3-53 patients; 3 studies included patients in both categories). Most patients were quadriplegic men unable to self-catheterize or patients (of both sexes) with multiple sclerosis. All studies except two were case reports or case series; both exceptions were controlled studies and included in the Mehta meta-analysis. The authors of both reviews noted that, while most of the available studies have reported improvements with botulinum toxin injections, there are few published studies, and those published have small sample sizes.

De Seze et al (2002) studied 13 patients with chronic urinary retention due to detrusor sphincter dyssynergia from spinal cord disease (traumatic injury, multiple sclerosis, congenital malformations) who were randomized to perineal botulinum toxin type A or lidocaine injections into the external urethral sphincter. In the botulinum group, there was a significant decrease in the primary outcome of postvoid residual volume compared with no change in the control group (lidocaine injection). Improvements were also seen in satisfaction scores and other urodynamic outcomes.

Detrusor Sphincter Dyssynergia Summary
There is a lack of adequately powered, scientifically rigorous RCTs to establish the efficacy of botulinum toxin in patients with detrusor sphincter dyssynergia.

Benign Prostatic Hyperplasia
The use of botulinum toxin to treat symptoms of benign prostatic hyperplasia (BPH) is premised in part on a static component related to prostate size and a dynamic component related to the contraction of smooth muscle within the gland. Botulinum therapy treats this latter component. Marchal et al (2012) published a systematic review on use of botulinum toxin to treat BPH. Reviewers identified 25 studies, including controlled and uncontrolled studies and abstracts in journal supplements. There were 6 RCTs, three published as full articles and three published as abstracts (2 RCTs were included in a meta-analysis). Reviewers reported that the mean postvoiding residue, both in pre- and posttreatment, did not differ significantly; pooled results were not reported for between-group outcomes. One of the RCTs, by Maria et al (2003), reported on 30 patients with BPH randomized to intraprostatic botulinum toxin type A or saline injection. Inclusion criteria were moderate-to-severe symptoms of BPH based on the American Urological Association score and a mean peak urinary flow rate of no more than 15 mL per second with a void volume of 150 mL or less. After 2 months, the American Urological Association symptom score decreased by 65% among
Botulinum Toxins

Policy # 00012
Original Effective Date: 01/28/2003
Current Effective Date: 08/14/2019

those receiving botulinum toxin compared with no significant change in the control group. Mean peak urinary flow rate was significantly increased in the treatment group.

Benign Prostatic Hyperplasia Summary
Given the prevalence of BPH, larger trials with good methodology that compare the role of botulinum toxin with other medical and surgical therapies for treating BPH are warranted before conclusions can be drawn about the impact of this technology on health outcomes.

Interstitial Cystitis
Interstitial cystitis (IC) is a chronic condition characterized by pain, urgency, and frequent urination of small volumes.

Wang et al (2016) reported the findings of meta-analysis that included 7 RCTs and a retrospective study. Reviewers rated only one of the 7 RCTs as high quality (i.e., low risk of bias) while five were rated as moderate, and the other was rated as a high risk of bias. Moreover, reviewers reported a statistically significant effect on multiple outcome measures. However, the trials that generated these data suffered from multiple sources of bias, leading reviewers to conclude that “further well-designed, large-scale RCTs are required to confirm the findings of this analysis.”

The systematic review by Tirumuru et al (2010) identified 3 RCTs and 7 prospective cohort studies evaluating intravesical botulinum toxin type A injections for IC/painful bladder syndrome. Sample sizes of all studies were relatively small (range, 10-67 patients; total N=260 patients). Treatment protocols varied (e.g., dose of botulinum toxin, number of injection sites, location of injection sites). Meta-analyses were not performed due to heterogeneity among studies. All 3 RCTs were conducted outside of the United States. Two studies reported response rates as an outcome measure (both used a 7-point Global Response Assessment scale). One study found a significantly higher response rate with botulinum toxin plus hydrodistension than with hydrodistension-only, and the other found a significantly higher response rate with bacillus Calmette-Guérin therapy than with botulinum toxin. Some adverse events, in particular dysuria and voiding difficulty, were reported and 19 (7%) of 260 patients self-catheterized at some time after treatment.

Three RCTs evaluating botulinum toxin for treatment of IC and/or bladder pain syndrome have been published. One, by Akiyama et al (2015), lacked blinding and reported only 1 month of comparative data. The 2 recent double-blind, placebo-controlled trials are described next.

©2019 Blue Cross and Blue Shield of Louisiana

Blue Cross and Blue Shield of Louisiana is an independent licensee of the Blue Cross and Blue Shield Association and incorporated as Louisiana Health Service & Indemnity Company.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without permission from Blue Cross and Blue Shield of Louisiana.
The RCT by Kuo et al (2016) included 60 Taiwanese patients (52 women, 8 men) with IC/painful bladder syndrome who had failed at least 6 months of conventional therapy. To be eligible, patients had to fail at least 2 types of treatment modalities (ie, oral medications, intravesical treatment with heparin or hyaluronic acid). Individuals with a variety of comorbid conditions were excluded, including those with urinary retention. Participants received intravesical injection of botulinum toxin type A (Botox 100 U) or normal saline (placebo), followed by hydrodistention under general anesthesia. The primary end point was the reduction in pain on a 10-point visual analog scale (VAS) score 8 weeks after treatment. There was a significantly greater reduction in the mean VAS score in the botulinum toxin group (-2.6) than in the placebo group (-0.9; p=0.021). Secondary outcomes, including overall subjective success (assessed by a Global Response Assessment), Interstitial Cystitis Symptom Index, urinary frequency, and nocturia did not differ significantly between groups. The incidence of adverse events was significantly higher in the botulinum toxin group than in the placebo group at 8 weeks (p=0.033). For example, 16 (40%) patients in the botulinum group and 1 (5%) in the placebo group reported dysuria at 8 weeks.

The RCT by Manning et al (2014) included 54 women with IC or BPS refractory to at least 2 recognized treatments. Patients with voiding difficulty, bladder malignancy, and recurrent UTI were excluded. The primary outcome was the O’Leary-Sant (OLS) Questionnaire score, which assesses on daytime frequency, nocturia, urgency, and bladder pain. Patients received hydrodistention under general anesthesia, with either an injection of botulinum toxin type A (Dysport 500 U) or normal saline (placebo). The OLS score at 3 months did not differ significantly between groups. Scores were 20.4 (95% CI, 17.1 to 23.7) in the botulinum toxin group, and 25.3 (95% CI, 21.9 to 28.8) in the placebo group (MD=3.7; 95% CI, -0.34 to 7.6; p=0.12). However, in the subgroups of 42 patients without UTIs, the OLS score was significantly improved with botulinum toxin than with placebo (MD=6.1; 95% CI, 2.5 to 9.6; p=0.02). Adverse events were not reported.

Interstitial Cystitis Summary
There is insufficient evidence that botulinum toxin improves the net health outcome in patients with IC. RCTs have had mixed findings on efficacy outcomes, and botulinum toxin has been associated with adverse events (e.g., dysuria). Moreover, there is insufficient evidence comparing botulinum toxin injection with alternative treatments.
Botulinum Toxins

Policy # 00012
Original Effective Date: 01/28/2003
Current Effective Date: 08/14/2019

Tremor
A tremor can be defined as alternate or synchronous contractions of antagonistic muscles. Some patients may be disabled by severe or task-specific tremors. Tremors are also a frequent component of dystonias, and successful treatment of dystonias can reduce tremors.

Three randomized, placebo-controlled studies have addressed essential hand tremors; the trial by Brin et al (2001) enrolled 133 patients, and the trial by Jankovic et al (1996) enrolled 25 patients. These RCTs reported inconsistent findings using tremor symptom scales and neither reported functional outcomes. The third trial, by Mittal et al (2017), randomized 30 patients with essential tremor and Parkinson disease tremor to incobotulinumtoxinA (Xeomin) in a crossover design. Treatment efficacy was evaluated by the tremor subsets of the Unified Parkinson’s Disease Rating Scale, the Patient Global Impression of Change 4, and an evaluation set for 8 weeks after each of the 2 sets of treatments. There were statistically significant improvements in clinical rating scores of rest tremor and tremor severity at 4 and 8 weeks after the incobotulinumtoxinA (Xeomin) injection and of action/postural tremor at 8 weeks; however, there was no statistically significant difference in grip strength at 4 weeks between the 2 groups. Other studies have shown that 30% to 70% patients who receive onabotulinumtoxinA (Botox) for tremor develop moderate-to-severe hand weakness.

Botulinum toxin has been investigated in patients with tremors unrelated to dystonias in case reports and case series.

Tremor Summary
The clinical significance of contradictory findings from 2 RCTs in patients with tremor are unclear. While a third small crossover trial has reported a statistically significant reduction in tremors in patients with Parkinson disease, a larger trial with longer term follow-up is required to replicate these findings and provide long-term follow-up to mitigate the risk of developing hand weakness over the course of time.

Chronic Low Back Pain
Only 1 RCT of botulinum toxin type A treatment in patients with low back pain has been published. The trial, by Foster et al (2001), enrolled 31 consecutive patients with chronic low back pain of at least 6 months in duration and more predominant pain on 1 side. Patients were injected with onabotulinumtoxinA (Botox) 40 U at 5 lumbosacral locations for a total of 200 U (treated group) or saline placebo (placebo group). Injections were made on one side of the back only,
Botulinum Toxins

Policy # 00012
Original Effective Date: 01/28/2003
Current Effective Date: 08/14/2019

depending on predominance of pain. At 8 weeks, 60% of treated patients and 12.5% of placebo patients showed reductions in VAS pain scores (p=0.009). Perceived functional status (Oswestry Disability Index) at 8 weeks showed that 66.7% of treated patients and 18.8% of placebo patients were responders (p=0.011).

Chronic Low Back Pain Summary
The population with chronic low back pain is heterogeneous. Results of a small RCT in a group of selected subjects cannot be used to generalize results for the whole population with chronic low back pain. Furthermore, studies should examine the long-term effectiveness of repeated courses of botulinum toxin to determine the durability of repeated treatments.

Lateral Epicondylitis
Lin et al (2017) published a systematic review and meta-analysis that included 6 RCTs (total N=321 participants) comparing botulinum toxin with placebo or corticosteroid injections. Reviewers assessed SMDs in pain relief and grip strength at 3 time points: 2 to 4, 8 to 12, and 16 weeks or more after injection. Compared with placebo, botulinum toxin injection significantly reduced pain at all 3 time points (SMD = -0.73; 95% CI, -1.29 to -0.17; SMD = -0.45; 95% CI, -0.74 to -0.15; SMD = -0.54; 95% CI, -0.99 to -0.11, respectively). Botulinum toxin was less effective than corticosteroid at 2 to 4 weeks (SMD=1.15; 95% CI, 0.59 to 1.78), and both treatments appeared similar in efficacy after 8 weeks.

Krogh et al (2013) published a systematic review and meta-analysis on the comparative effectiveness of injection therapies for lateral epicondylitis. Seventeen trials, four of which evaluated botulinum toxin, were identified. In a meta-analysis, botulinum toxin showed marginal benefit (SMD = -0.50; 95% CI, -0.81 to -0.08). All trials were at high risk of bias, and the treatment was associated with temporary paresis of finger extension.

Another relevant systematic review was conducted by Sims et al (2014). The systematic review addressed nonsurgical treatment of lateral epicondylitis. Reviewers identified 58 RCTs. Four addressed treatment with botulinum toxin, and the remainder addressed other treatments (eg, corticosteroid injection, iontophoresis, prolotherapy). All trials were placebo-controlled. Three of the trials did not report significant differences in pain scores or grip strength over 18 weeks. The other 3 RCTs found significant improvements in pain scores, but not in grip strength. All studies had patients in treatment groups who reported transient weakness in finger extension.
Botulinum Toxins

Policy # 00012
Original Effective Date: 01/28/2003
Current Effective Date: 08/14/2019

Lateral Epicondylitis Summary
Several systematic reviews have identified a small number of RCTs evaluating botulinum toxin for treating epicondylitis. The RCTs were generally considered to be at high risk of bias, had mixed findings, and all reported transient adverse events for patients treated with botulinum toxin. The RCTs evaluating botulinum toxin were all placebo-controlled, and potential alternative treatments are available for this condition that could have been compared with botulinum toxin. A systematic review that included trials comparing botulinum toxin with corticosteroid injections reported that botulinum toxin was less effective than corticosteroid at 2 to 4 weeks and both treatments appeared similar in efficacy after 8 weeks.

Other Joint Pain
Two case series of patients with chronic joint pain refractory to conservative management studied the effect of botulinum toxin type A injections into several joints of patients with arthritis and into the knee joint of patients with chronic knee pain (1 case series specified that abobotulinumtoxinA [Dysport] was to be used). Both patient groups reported significant reductions in joint pain and improvements function compared with baseline, lasting for 3 to 12 months. Although the results of several trials of botulinum toxin injections into joints for chronic pain favored treatment, some did not.

Other Joint Pain Summary
Due to the lack of consistent findings from well-designed studies, the evidence is insufficient that botulinum toxin for treatment of other joint pain improves the net health outcome.

Myofascial Pain Syndrome
Myofascial pain syndrome is characterized by muscle pain with increased tone and stiffness associated using myofascial trigger points. Patients are often treated with trigger point injections with saline, dilute anesthetics, or dry needling. These injections, while established therapy, have been controversial because it is unclear whether any treatment effect is due to the injection, dry needling of the trigger point, or a placebo effect. The optimal study design to evaluate the efficacy of botulinum toxin injection for treating myofascial pain syndrome would be a double-blind RCT to minimize the placebo effect and would compare botulinum toxin injections with dry needling and/or with anesthetic injection.
Several systematic reviews of RCTs have evaluated botulinum toxin injection for myofascial pain syndrome. More recently, a Cochrane review by Soares et al (2014) identified 4 RCTs (total N=233 patients). All RCTs were placebo-controlled and double-blind. Three were prospective, and one used a crossover design. Follow-up in the prospective studies was 12 weeks in 2 studies and 4 weeks in the third. Due to heterogeneity among studies, reviewers did not pool analyses. The primary outcomes were change in pain as assessed by validated instruments. Three of the 4 studies found that botulinum toxin did not significantly reduce pain intensity. Another 2014 systematic review had similar findings.

A systematic review that included a meta-analysis was published by Langevin et al (2011). A pooled analysis from 4 placebo-controlled trials did not find a statistically significant benefit of botulinum toxin. The SMD was -0.21 (95% CI, -0.50 to 0.70).

An industry-sponsored RCT by Nicol et al (2014), not included in the systematic reviews, focused on patients with myofascial pain who had responded to an initial injection of botulinum toxin type A. A total of 114 patients received an initial injection and 54 responders were subsequently randomized to a second injection of botulinum toxin or saline placebo 14 weeks after the initial injection. At week 26 after the initial injection, but not at week 20, there was a significantly greater improvement in the mean visual numeric scores for pain in the botulinum toxin group than in the placebo group (p=0.019). There was no significant difference between groups at week 26, compared with baseline, in QOL using the 36-Item Short-Form Health Survey. Thus, this trial had mixed outcomes and restricted study participation to a responder group. As a result, this inclusion criterion could have biased the proportion of patients who initially experienced a placebo response, thereby making blinding more difficult for those familiar with side effects of the active treatment.

Myofascial Pain Summary
Several RCTs have evaluated botulinum toxin for treatment of myofascial pain syndrome. Studies were double-blind, but compared botulinum toxin with placebo, rather than common alternative treatments. Most trials, as well as a pooled analysis of study findings, did not report improved health outcomes with botulinum toxin.

Temporomandibular Joint Disorders
A systematic review by Chen et al (2015) evaluated the literature on botulinum toxin for treatment of temporomandibular joint disorders. Eligibility included RCTs comparing any dose or type of
Botulinum Toxins

Policy # 00012
Original Effective Date: 01/28/2003
Current Effective Date: 08/14/2019

Botulinum toxin with any alternative intervention or placebo. Five RCTs met the inclusion criteria; two were parallel-group studies, and two were crossover studies. Study sizes tended to be small; all but one included 30 or more participants. Three of the 5 studies were judged to be at high risk of bias. All studies administered a single injection of botulinum toxin and followed patients up at least 1 month later. Four studies used a placebo (normal saline) control group and the fifth used botulinum toxin to fascial manipulation. The primary outcome was a validated pain scale. Data were not pooled due to heterogeneity among trials. In a qualitative review of the studies, only 2 of the 5 trials found a significant short-term (1-to-2 months) benefit of botulinum toxin compared with control on pain reduction.

Temporomandibular Joint Disorders Summary
A systematic review of RCTs found insufficient evidence that botulinum toxin improves the net health outcome in patients with temporomandibular joint disorders. Studies have tended to be small, have a high risk of bias, and only 2 of 5 RCTs found that botulinum toxin reduced pain more than a comparator.

Trigeminal Neuralgia
Morra et al (2016) published a systematic review that included 4 RCTs (total N=178 patients). Pooled results showed that patients receiving botulinum toxin type A were 2.87 (95% CI, 1.76 to 4.69; p<0.001) times more likely to be responder (defined as patients with >50% reduction in mean pain score from baseline to end point) than the controls, with no significant detected heterogeneity (p=0.31; I²=4%). Further, there was reduction in the paroxysms frequency per day (MD = -29.79; 95% CI, -38.50 to -21.08; p<0.001).

Three RCTs using botulinum toxin to treat trigeminal neuralgia were identified; all were double-blind, placebo-controlled, conducted in China, and appear to have been done by the same research group. No industry funding was reported. Sample sizes in the trials were relatively small, with fewer than 30 in any one. More recently, an RCT by Zhang et al (2014) included 84 patients with trigeminal neuralgia for at least 4 months who had failed other treatments (most commonly carbamazepine, gabapentin, or opioids), had a mean pain intensity score of at least 4, and had a mean attack frequency of at least 4 per day. Medication treatment remained unchanged during the trial. Patients were randomized to 1 of 3 groups: a single injection of normal saline (placebo) (n=28), botulinum toxin 25 U/l (n=27), or botulinum toxin 75 U/l (n=29). The primary efficacy outcome was the proportion of responders, defined as at least a 50% reduction in the mean pain score from baseline to 8 weeks.
Botulinum Toxins

Policy # 00012
Original Effective Date: 01/28/2003
Current Effective Date: 08/14/2019

Pain severity was measured on an 11-point VAS (0-10 points). Mean baseline VAS scores were similar across the 3 groups (range, 6.24-7.18). At week 8, the proportion of responders was 32.1% in the placebo group, 70.4% in the 25-U group, and 86.2% in the 75-U group (p<0.002). No severe adverse events were reported, and no patients discontinued study participation due to adverse events. No severe or long-lasting adverse events were reported.

An RCT by Shehata et al (2013) in Egypt included 20 women diagnosed with intractable idiopathic trigeminal neuralgia, defined as insufficient response to medication treatments for 3 months prior to study participation. Patients were randomized to a single injection of botulinum toxin type A or placebo. The primary efficacy outcome was reduction in pain, as measured by a 10-point VAS, and change in frequency of paroxysms. Baseline VAS scores were similar (8.3 in the botulinum toxin group, 8.3 in the placebo group). At 12 weeks post-injection, the VAS score decreased by 6.5 points in the botulinum toxin group and by 0.3 points in the placebo group (p<0.001). Paroxysm frequency was a secondary outcome. The baseline frequency of paroxysm was 39.2 in the botulinum toxin group and 36.7 in the placebo group. After 12 weeks, the mean frequency of paroxysms per day was 4.0 per day and 36.1 per day, respectively (p<0.001).

The third trial, published by Wu et al (2012), included 42 patients with trigeminal neuralgia. To be eligible for participation, patients had to have a mean pain intensity of at least 4 and a mean attack frequency of at least 4 per day despite medication therapy. Most patients were taking medication at baseline (e.g., opioids, carbamazepine, gabapentin); medications remained unchanged during the trial. Patients were randomized to botulinum toxin type A 75 U or saline (placebo). They were followed for 12 weeks. The primary end points were pain severity and pain attack frequency. Symptoms were recorded by patients each morning, for the previous 24-hour period using a VAS. Both of the primary end points were statistically significantly better in the treatment group than in the control group. The proportion of patients with at least a 50% reduction in the mean pain score from baseline to 12 weeks (a secondary end point) was 15 (68%) of 22 in the botulinum toxin group and 3 (15%) of 20 in the placebo group (p<0.01). No severe or long-lasting adverse events were reported.

Trigeminal Neuralgia Summary

Three small RCTs from China and one from Egypt have assessed patients who had failed medication treatment; the RCTs found a statistically significant benefit for botulinum toxin type added to their medication regimen vs placebo on pain intensity and attack frequency.
Limitations of the evidence base included studies from only a single research group, the small overall number of patients evaluated, relatively short follow-up (8-12 weeks), and lack of reported statistical power analysis. In the absence of power analysis, there is a higher chance of spurious statistically significant findings.

Pain Control After Hemorrhoidectomy

Several small RCTs of botulinum toxin intrasphincter injection for controlling pain after hemorrhoidectomy have been published. A trial by Patti et al (2005) randomized 30 patients to botulinum toxin 20 U or saline injection and reported a significantly shorter duration of postoperative pain at rest and during defecation in the treated group. A trial by Patti et al (2006), which also included 30 patients, found significant differences in postoperative maximum resting pressure change from baseline with botulinum toxin vs topical glyceryl trinitrate (p<0.001). In addition, there was a significant reduction in postoperative pain at rest (p=0.01) but not during defecation. There was no difference in healing.

Pain Control After Hemorrhoidectomy Summary

RCTs evaluating botulinum toxin injection after hemorrhoidectomy have suggested improvement in pain control; however, findings need confirmation in larger trials.

Facial Wound Healing

Ziade et al (2013) reported on a trial including 30 adults presenting to the emergency department with facial wounds without tissue loss. Patients were assigned to have an injection of botulinum toxin (n=11) or no injection (n=13) within 72 hours of the suturing of the wounds. The primary outcomes were scores on the following scales at 1 year: Patient Scar Assessment Scale (PSAS), Observer Scar Assessment Scale (OSAS), Vancouver Scar Scale (VSS), and a 1 to 10 VAS. The PSAS is a patient-reported outcome, the OSAS and VSS were assessed clinically by a blinded independent evaluator, and the VAS was assessed using photograph analysis by a team of 6 medical specialists. Patients were not blinded to treatment group, and thus PSAS scores might have been a more subjective outcome, whereas it is likely that OSAS, VSS, and VAS scores were objectively assessed. Twenty-four (80%) of 30 patients were available for the 1-year follow-up. There were no significant differences between groups in the PSAS, OSAS, and VSS scores. For example, median OSAS score was 8 in the botulinum toxin group and 9 in the control group. However, a significant between-group difference was found for the VAS score, favoring the botulinum toxin group. Median VAS score was 8.25 for the botulinum group and 6.35 for the control group (p<0.001). These results
Botulinum Toxins

Policy # 00012
Original Effective Date: 01/28/2003
Current Effective Date: 08/14/2019

demonstrated a lack of consistency in finding a benefit across outcomes—there was no significant difference in the patient-reported or clinically accessed outcomes, only in the outcome based on photographic analysis.

Previously, Gassner et al (2006) conducted a small RCT of botulinum toxin-induced immobilization of facial lacerations to improve wound healing compared with placebo (n=31). The outcome was determined by blinded assessment of photographs of wound healing at intervals using a VAS. The trialists reported enhanced wound healing in the treatment arm (8.9) compared with the placebo arm (7.2; p=0.003).

Facial Wound Healing Summary

There are few RCTs evaluating botulinum toxin for facial wound healing, and the available trials offer inconsistent evidence of benefit.

Pelvic and Genital Pain in Women

One double-blind, randomized, placebo-controlled trial by Abbott et al (2006) evaluated 60 women with chronic pelvic pain and pelvic floor spasm. Patients received injections of botulinum toxin type A or placebo. Pain scores were reduced for both groups, but there were no significant differences between groups. The trial likely was underpowered to detect clinically significant differences in outcomes between groups.

Other studies include a small, open-label trial by Dykstra et al (2006) that tested botulinum toxin type A injections in painful vulvar tissue to alleviate provoked vestibulodynia (n=19). Patients receiving up to 2 doses had significantly reduced pain compared with baseline for 8 (lower dose) to 14 weeks (higher dose). A prospective cohort study by Jarvis et al (2004) tested different doses of botulinum toxin in 12 women with pelvic floor muscle hypertonicity and history of chronic pelvic pain. Compared with baseline, there were nonsignificant reductions in pelvic pain and nonsignificant improvements in QOL.

Pelvic and Genital Pain in Women Summary

A single inadequately powered RCT that evaluated botulinum toxin to treat pelvic or genital pain in women failed to demonstrate statistically significant reduction in pain scores compared with placebo.
Neuropathic Pain After Neck Dissection

Two open-label trials of 16 and 23 patients, respectively, who had failed conservative therapy investigated various doses of botulinum toxin type A injected into the area of complaint. For both studies, which were conducted by the same group, results indicated significant reductions in pain compared with baseline and trends toward improved QOL.

Neuropathic Pain After Neck Dissection Summary

Lack of a randomized, placebo-controlled trial, controlling for strong placebo effects in pain therapy, render the results of 2 open-label trials inconclusive for the use of botulinum toxin to treat neuropathic pain after neck dissection.

Tinnitus

Slengerik-Hansen et al (2016) reported the findings of a systematic review of 22 studies, which mainly included case reports and case series with a total of 51 treated patients. Reviewers acknowledged that selected studies suffered from an extremely low evidence level with several sources of bias.

Stidham et al (2005) explored the use of botulinum toxin type A injections for tinnitus treatment under the theory that blocking the autonomic pathways would reduce the perception of tinnitus. In this trial, 30 patients were randomized in a double-blind study to 3 subcutaneous injections of botulinum toxin type A around the ear followed by placebo injections 4 months later, or placebo injections first, followed by botulinum toxin type A. The trialists reported that 7 patients had reduced tinnitus after the botulinum toxin type A injections, which was statistically significant compared with the placebo groups in which only 2 patients reported reduced tinnitus (p<0.005). Tinnitus Handicap Inventory scores were also significantly lower between pretreatment and 4 months after botulinum toxin type A injections. However, no other significant differences were noted between both treatments at 1 and 4 months postinjection. Trial limitations included sample size and lack of intention-to-treat analysis.

Tinnitus Summary

The evidence for botulinum toxin in patients with tinnitus consists mostly of case reports and case series. Well-conducted RCTs with sufficiently large sample sizes are needed to demonstrate that botulinum toxin improves the net health outcomes in patients with tinnitus.
Pain Associated With Breast Reconstruction After Mastectomy

There are no published RCTs evaluating botulinum toxin for pain associated with breast reconstruction after mastectomy. A systematic review by Winocour et al (2014) identified 7 studies on perioperative injection of botulinum toxin type A following breast reconstruction surgery. They consisted of 2 prospective controlled cohort studies, 3 retrospective controlled cohort studies, and 2 case series. Most studies were small; only 1 (N=293) had more than 50 participants. Three studies assessed postoperative pain and all three found that at least some outcomes were significantly better in the botulinum toxin group than in the comparison group.

Pain Associated With Breast Reconstruction After Mastectomy Summary

The evidence for botulinum toxin in patients with pain associated with breast reconstruction after mastectomy mostly consists of observational studies. Well-conducted RCTs with sufficiently large sample sizes are needed to demonstrate that botulinum toxin improves the net health outcomes in these patients.

Hirschsprung Disease

The published literature on use of botulinum toxin injection to treat Hirschsprung disease consists of small case series. The largest prospective case series, published by Minkes and Langer (2000), included 18 children (median age, 4 years) with persistent obstructive symptoms after surgery for Hirschsprung disease. Patients received injections of botulinum toxin (Botox) into 4 quadrants of the sphincter. The total dose of botulinum toxin during the initial series of injections was 15 to 60 U. Twelve (67%) of 18 patients improved for more than 1 month and the remaining 6 (33%) either showed no improvement or improved for less than 1 month. Ten children had 1 to 5 additional injections due to either treatment failure or recurrence of symptoms; retreatment was not based on a standardized protocol.

A series by Patruset al (2011) retrospectively reviewed outcomes in 22 patients with Hirschsprung disease treated over 10 years; subject had received a median of 2 (range, 1-23) botulinum toxin injections for postsurgical obstructive symptoms,. The formulation of botulinum toxin was not specified. Median follow-up (time from first injection to time of chart review) was 5.0 years (range, 0-10 years). At chart review, 2 (9%) of 22 patients had persistent symptoms. Eighteen (80%) children had a “good response” to the initial treatment (not defined), and 15 (68%) had additional injections. The authors reported that the number of hospitalizations for obstructive symptoms decreased significantly after botulinum toxin injection (median, 0) compared with pre-injection (median, 1.5;
p=0.003). The authors did not report whether patients received other treatments during the follow-up period in either case series.

Hirschsprung Disease Summary
Summary: There are no controlled trials of botulinum toxin for the treatment of Hirschsprung disease; however, guidelines for the management of postoperative obstructive symptoms in children with HD have been published by the American Pediatric Surgical Association. If increased internal anal sphincter tone is suspected, a trial of botulinum toxin injection may be helpful. In many cases, obstructive symptoms improve or resolve with time.

Gastroparesis
A systematic review by Bai et al (2010) identified 15 studies on botulinum toxin injection to treat gastroparesis. Two studies were RCTs; the remainder was case series or open-label observational studies. Reviewers stated that, while the nonrandomized studies generally found improvements in subjective symptoms and gastric emptying after botulinum toxin injections, the RCTs did not confirm the efficacy of botulinum toxin for treating gastroparesis. Reviewers concluded that there was insufficient evidence to recommend botulinum toxin for gastroparesis. Brief summaries of the 2 RCTs follow.

Arts et al (2007) published a randomized crossover study with 23 patients. The trial included consecutive patients at a single institution who had symptoms suggestive of gastroparesis and established delayed gastric emptying for solids and liquids. Patients received, in random order, injections of onabotulinumtoxinA (Botox) or saline during gastrointestinal endoscopies, with a 4-week interval between injections. Symptoms were assessed using the Gastroparesis Cardinal Symptom Index (GCSI), which has a maximum score of 45. There were no statistically significant differences in improvement after botulinum toxin injection or saline injection for either solid or liquid emptying times. For example, liquid half-emptying time was 8.2 minutes after onabotulinumtoxinA (Botox) injection and 22.5 minutes after saline injection (p>0.05). In addition, in pooled analyses, mean total GCSI score did not differ significantly after onabotulinumtoxinA (Botox) (6.1) compared with saline treatment (3.8; p>0.05).

The other RCT, by Friedenberg et al (2008), was a single-center, double-blind trial with 32 patients. Patients had delayed gastric emptying and GCSI scores of 27 or higher. They received an injection of onabotulinumtoxinA (Botox) (n=16) or saline placebo (n=16). All patients completed
Botulinum Toxins

Policy # 00012
Original Effective Date: 01/28/2003
Current Effective Date: 08/14/2019

the trial. Patients were evaluated with gastric emptying scintigraphy prior to treatment and at a 1-month follow-up. The proportion of patients with at least a 9-point reduction in GCSI score at 1 month (the primary end point) was 6 (37.5%) of 16 in the onabotulinumtoxinA (Botox) group and 9 (56.3%) of 16 in the placebo group; the difference between groups was not statistically significant. Improvement in gastric emptying after 1 month (a secondary end point) also did not differ significantly between groups.

Gastroparesis Summary
Two small inadequately powered RCTs failed to show a benefit of botulinum toxin for treatment of gastroparesis. Additional adequately powered RCTs are needed.

Depression
Magid et al (2015) published a meta-analysis of 3 placebo-controlled randomized trials evaluating botulinum toxin type A for treating unipolar major depressive disorder. Sample sizes were small; a total of 59 patients were treated with botulinum toxin and 75 with placebo. In a pooled analysis of individual patient data, there was a significantly higher response rate in the botulinum toxin group (54.2%) than in the placebo group (10.7%; OR=7.3; 95% CI, 2.4 to 22.5). Other outcomes also favored the botulinum toxin group. No RCTs compared botulinum toxin with antidepressant treatment, which is standard of care.

Depression Summary
A pooled analysis of 3 small RCTs showed a statistically significant benefit of botulinum toxin compared with placebo. Studies were small and did not compare botulinum toxin with antidepressants.

References
Botulinum Toxins

Policy # 00012
Original Effective Date: 01/28/2003
Current Effective Date: 08/14/2019

Botulinum Toxins

Policy # 00012
Original Effective Date: 01/28/2003
Current Effective Date: 08/14/2019

Botulinum Toxins

Policy # 00012
Original Effective Date: 01/28/2003
Current Effective Date: 08/14/2019

Botulinum Toxins

Policy # 00012
Original Effective Date: 01/28/2003
Current Effective Date: 08/14/2019

Botulinum Toxins

Policy # 00012
Original Effective Date: 01/28/2003
Current Effective Date: 08/14/2019

Botulinum Toxins

Policy # 00012
Original Effective Date: 01/28/2003
Current Effective Date: 08/14/2019

Botulinum Toxins

Policy # 00012
Original Effective Date: 01/28/2003
Current Effective Date: 08/14/2019

Botulinum Toxins

Policy # 00012
Original Effective Date: 01/28/2003
Current Effective Date: 08/14/2019

Botulinum Toxins

Policy # 00012
Original Effective Date: 01/28/2003
Current Effective Date: 08/14/2019

©2019 Blue Cross and Blue Shield of Louisiana

Blue Cross and Blue Shield of Louisiana is an independent licensee of the Blue Cross and Blue Shield Association and incorporated as Louisiana Health Service & Indemnity Company.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without permission from Blue Cross and Blue Shield of Louisiana.
Botulinum Toxins

Policy # 00012
Original Effective Date: 01/28/2003
Current Effective Date: 08/14/2019

Policy History
Original Effective Date: 01/28/2003
Current Effective Date: 08/14/2019
11/21/2002 Medical Policy Committee review
01/28/2003 Managed Care Advisory Council approval
11/02/2004 Medical Director review
11/29/2004 Managed Care Advisory Council approval
06/21/2005 Medical Policy Committee review. Policy revision; palmar hyperhidrosis added to off label uses of botulinum toxin, subject case management.
07/15/2005 Managed Care Advisory Council approval

©2019 Blue Cross and Blue Shield of Louisiana

Blue Cross and Blue Shield of Louisiana is an independent licensee of the Blue Cross and Blue Shield Association and incorporated as Louisiana Health Service & Indemnity Company.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without permission from Blue Cross and Blue Shield of Louisiana.

Page 57 of 63
Botulinum Toxins

Policy # 00012
Original Effective Date: 01/28/2003
Current Effective Date: 08/14/2019

02/15/2006 Medical Policy Committee review. Refer to medical director for consideration under case management was deleted.

07/12/2006 Medical Director review
07/19/2006 Medical Policy Committee approval. Format changes. FDA information added.
09/06/2006 Medical Director review
09/20/2006 Medical Policy Committee approval. Treatment of incontinence due to detrusor overreactivity caused by spinal cord injury that is inadequately controlled with anticholinergic therapy was added to the list of off-label indications that are eligible for coverage. Rationale and Source was updated to include urologic applications.

01/17/2007 Medical Policy Committee approval. Policy format updated to reflect differentiation of botulinum toxin A and botulinum toxin B indications; coverage eligibility unchanged.

05/02/2007 Medical Director review
05/23/2007 Medical Policy Committee approval. Coverage eligibility unchanged.
05/07/2008 Medical Director review
05/21/2008 Medical Policy Committee approval. Coverage eligibility unchanged.
06/04/2009 Medical Director review
06/17/2009 Medical Policy Committee approval. Added bullet to “When Services Are Eligible for Coverage” section as follows:
 • Incontinence due to detrusor overactivity (urge incontinence), either idiopathic or due to neurogenic causes (e.g., spinal cord injury, multiple sclerosis), that is inadequately controlled with anticholinergic therapy.

Deleted bullet from “When Services Are Considered Investigational” section as follows:
 • Detrusor overactivity not due to spinal cord injury.

Added to the existing bullet in the “When Services Are Considered Investigational” section as follows:
 • Detrusor sphincteric dyssynergia (after spinal cord injury)

11/12/2009 Medical Policy Committee approval.
11/18/2009 Medical Policy Implementation Committee approval. Title changed to “Botulinum Toxins” to clarify that there are several of these drugs in the policy.

Deleted Botox as a botulinum toxin Type A drug and Myobloc as a botulinum toxin Type B drug. Added Onabotulinum and Abobotulinum listed as...
Botulinum Toxins

Policy # 00012
Original Effective Date: 01/28/2003
Current Effective Date: 08/14/2019

botulinum toxin Type A drugs and Rimabotulinum listed as a botulinum toxin Type B drug.

08/05/2010 Medical Policy Committee review
08/18/2010 Medical Policy Implementation Committee approval. Added upper limb spasticity to patient selection criteria for coverage.
11/04/2010 Medical Policy Committee review
10/06/2011 Medical Policy Committee review
10/19/2011 Medical Policy Implementation Committee approval. Added “Treatment of urinary incontinence due to detrusor overactivity associated with a neurologic condition (e.g., Spinal Cord Injury, Multiple Sclerosis) in adults who have an inadequate response to or are intolerant of an anticholinergic medication” under the FDA approved indications due to recent FDA approval.
05/03/2012 Medical Policy Committee review
05/16/2012 Medical Policy Implementation Committee approval. Added a Note to the end of the coverage section that botulinum toxins are unique, non-interchangeable and there is no fixed dose ratio among toxins. Coverage eligibility unchanged.
01/23/2013 Coding updated
02/07/2013 Medical Policy Committee review
02/20/2013 Medical Policy Implementation Committee approval. Treatment of incontinence due to detrusor overactivity was moved from off-label to labeled indications.
02/06/2014 Medical Policy Committee review
02/19/2014 Medical Policy Implementation Committee approval. Added Prevention of pain associated with breast reconstruction after mastectomy, Hirschsprung’s disease, Gastroparesis, Facial wound healing, and Internal anal sphincter (IAS) achalasia to the investigational list (to track the BCBS policy). Updated background criteria for the indications that included new literature since last update or for indications deemed investigational. Also updated the references.
Botulinum Toxins

Policy # 00012
Original Effective Date: 01/28/2003
Current Effective Date: 08/14/2019

Expanded the indications to allow for interchangeability of botulinum toxin Type A products.

02/05/2015 Medical Policy Committee review
02/18/2015 Medical Policy Implementation Committee approval. No change to coverage criteria. Updated background info with most up to date information from the BCBS policy.
02/04/2016 Medical Policy Committee review
02/17/2016 Medical Policy Implementation Committee approval. Temporomandibular joint disorders, trigeminal neuralgia, and depression added to investigational statement. Added FDA approved indication of lower limb spasticity and updated background info.

01/01/2017 Coding update: Removing ICD-9 Diagnosis Codes
02/02/2017 Medical Policy Committee review
02/15/2017 Medical Policy Implementation Committee approval. No change to coverage.
02/01/2018 Medical Policy Committee review
02/21/2018 Medical Policy Implementation Committee approval. Updated Rationale/Source, Background. Added re-authorization statement.
08/09/2018 Medical Policy Committee review
08/15/2018 Medical Policy Implementation Committee approval. Added coverage for a new FDA approved Indication (chronic sialorrhea in adults secondary to Parkinson’s Disease/ atypical parkinsonism, stroke, or traumatic brain injury) and also coverage for Hirschprung’s disease with obstructive symptoms cause by internal sphincter achalasia following a pull-through surgery

08/01/2019 Medical Policy Committee review
08/14/2019 Medical Policy Implementation Committee approval. Added coverage for sialorrhea in pediatric developmental delays (e.g., cerebral palsy). Added CGRP inhibitors to list of options for migraine prophylaxis agents. Updated background information and references.

Next Scheduled Review Date: 08/2020
Botulinum Toxins

Policy # 00012
Original Effective Date: 01/28/2003
Current Effective Date: 08/14/2019

Coding
The five character codes included in the Blue Cross Blue Shield of Louisiana Medical Policy Coverage Guidelines are obtained from Current Procedural Terminology (CPT®), copyright 2018 by the American Medical Association (AMA). CPT is developed by the AMA as a listing of descriptive terms and five character identifying codes and modifiers for reporting medical services and procedures performed by physician.

The responsibility for the content of Blue Cross Blue Shield of Louisiana Medical Policy Coverage Guidelines is with Blue Cross and Blue Shield of Louisiana and no endorsement by the AMA is intended or should be implied. The AMA disclaims responsibility for any consequences or liability attributable or related to any use, nonuse or interpretation of information contained in Blue Cross Blue Shield of Louisiana Medical Policy Coverage Guidelines. Fee schedules, relative value units, conversion factors and/or related components are not assigned by the AMA, are not part of CPT, and the AMA is not recommending their use. The AMA does not directly or indirectly practice medicine or dispense medical services. The AMA assumes no liability for data contained or not contained herein. Any use of CPT outside of Blue Cross Blue Shield of Louisiana Medical Policy Coverage Guidelines should refer to the most current Current Procedural Terminology which contains the complete and most current listing of CPT codes and descriptive terms. Applicable FARS/DFARS apply.

CPT is a registered trademark of the American Medical Association.

Codes used to identify services associated with this policy may include (but may not be limited to) the following:

<table>
<thead>
<tr>
<th>Code Type</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPT</td>
<td>46505, 52287, 64611, 64612, 64615, 64616, 64617, 64640, 64642, 64643, 64644, 64645, 64646, 64647, 64650, 64653, 67345, 95873, 95874</td>
</tr>
<tr>
<td>HCPCS</td>
<td>J0585, J0586, J0587, J0588, S2340, S2341</td>
</tr>
<tr>
<td>ICD-10 Diagnosis</td>
<td>E08.43, E09.43, E10.43, E11.43, E13.43, F95.0-F95.9, G04.1, G10, G11.4, G12.20-G12.29, G20, G21.0-G21.9, G23.0-G23.9, G24.01-G24.09, G24.1-G24.9, G25.0-G25.9, G35, G36.0-G36.9, G37.1-G37.9, G43.001-G43.099, G44.1-G44.209, G45.0-G45.9, G46.3-G46.4, G51.0-G51.9, G54.0, G57.90-G57.92, G60.0-G60.2,</td>
</tr>
</tbody>
</table>
Botulinum Toxins

Policy # 00012
Original Effective Date: 01/28/2003
Current Effective Date: 08/14/2019

| G80.0-G80.9, G81.10-G81.14, G82.20-G82.54, G83.0-G83.9, G89.18-G89.28, G90.3, H02.0-H02.9, H49.00-H49.9, H50.0-H50.9, H51.0-H51.9, H93.11-H93.19, I63.30-I63.32, I63.81-I63.89, I69.0-I69.9, K11.7, K22.0, K31.84, K44.9, K60.1-K60.2, L11.8-L11.9, L57.2-L57.4, L66.4, L74.510-L74.519, L74.52, L85.8, L87.1-L87.8, L90.3-L90.8, L91.8, L92.2, L94.8, L98.5-L98.6, L99, M25.50-M25.579, M43.6, M53.82, M54.10-M54.9, M60.80-M60.9, M62.40-M62.49, M62.831-M62.838, M77.10-M77.12, M79.1-M79.7, N30.10-N30.11, N31.0-N31.9, N32.81, N36.44, N39.3-N39.46, N40.0, P11.1, P15.0-P15.8, Q43.1-Q43.2, Q68.0, R25.0-R25.9, R32, R49.8, R51, R61, R68.2, S06.2-S06.3, Z13.850, Z87.820 |

*Investigational – A medical treatment, procedure, drug, device, or biological product is Investigational if the effectiveness has not been clearly tested and it has not been incorporated into standard medical practice. Any determination we make that a medical treatment, procedure, drug, device, or biological product is Investigational will be based on a consideration of the following:

A. Whether the medical treatment, procedure, drug, device, or biological product can be lawfully marketed without approval of the U.S. Food and Drug Administration (FDA) and whether such approval has been granted at the time the medical treatment, procedure, drug, device, or biological product is sought to be furnished; or

B. Whether the medical treatment, procedure, drug, device, or biological product requires further studies or clinical trials to determine its maximum tolerated dose, toxicity, safety, effectiveness, or effectiveness as compared with the standard means of treatment or diagnosis, must improve health outcomes, according to the consensus of opinion among experts as shown by reliable evidence, including:

1. Consultation with the Blue Cross and Blue Shield Association technology assessment program (TEC) or other nonaffiliated technology evaluation center(s);
2. Credible scientific evidence published in peer-reviewed medical literature generally recognized by the relevant medical community; or
3. Reference to federal regulations.

**Medically Necessary (or “Medical Necessity”) - Health care services, treatment, procedures, equipment, drugs, devices, items or supplies that a Provider, exercising prudent clinical judgment, would provide to a patient for the purpose of preventing, evaluating, diagnosing or treating an illness, injury, disease or its symptoms, and that are:

©2019 Blue Cross and Blue Shield of Louisiana

Blue Cross and Blue Shield of Louisiana is an independent licensee of the Blue Cross and Blue Shield Association and incorporated as Louisiana Health Service & Indemnity Company.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without permission from Blue Cross and Blue Shield of Louisiana.
Botulinum Toxins

Policy # 00012
Original Effective Date: 01/28/2003
Current Effective Date: 08/14/2019

A. In accordance with nationally accepted standards of medical practice;
B. Clinically appropriate, in terms of type, frequency, extent, level of care, site and duration, and considered effective for the patient's illness, injury or disease; and
C. Not primarily for the personal comfort or convenience of the patient, physician or other health care provider, and not more costly than an alternative service or sequence of services at least as likely to produce equivalent therapeutic or diagnostic results as to the diagnosis or treatment of that patient's illness, injury or disease.

For these purposes, “nationally accepted standards of medical practice” means standards that are based on credible scientific evidence published in peer-reviewed medical literature generally recognized by the relevant medical community, Physician Specialty Society recommendations and the views of Physicians practicing in relevant clinical areas and any other relevant factors.

‡ Indicated trademarks are the registered trademarks of their respective owners.

NOTICE: Medical Policies are scientific based opinions, provided solely for coverage and informational purposes. Medical Policies should not be construed to suggest that the Company recommends, advocates, requires, encourages, or discourages any particular treatment, procedure, or service, or any particular course of treatment, procedure, or service.