Sacral Nerve Neuromodulation/Stimulation

Policy # 00108
Original Effective Date: 03/25/2002
Current Effective Date: 06/21/2017

Applies to all products administered or underwritten by Blue Cross and Blue Shield of Louisiana and its subsidiary, HMO Louisiana, Inc. (collectively referred to as the “Company”), unless otherwise provided in the applicable contract. Medical technology is constantly evolving, and we reserve the right to review and update Medical Policy periodically.

Urinary Incontinence and Non-obstructive Retention

When Services May Be Eligible for Coverage

Coverage for eligible medical treatments or procedures, drugs, devices or biological products may be provided only if:

- Benefits are available in the member’s contract/certificate, and
- Medical necessity criteria and guidelines are met.

Based on review of available data, the Company may consider a trial period of sacral nerve neuromodulation (SNM) with either percutaneous nerve stimulation or a temporarily implanted lead in patients who meet all of the following criteria to be eligible for coverage:

- There is a diagnosis of at least one of the following:
 - Urge incontinence
 - Urgency-frequency syndrome
 - Non-obstructive urinary retention
 - Overactive Bladder; and
- There is documented failure or intolerance to at least two conventional conservative therapies (e.g., behavioral training such as bladder training, prompted voiding, or pelvic muscle exercise training, pharmacologic treatment for at least a sufficient duration to fully assess its efficacy, and/or surgical corrective therapy); and
- The patient is an appropriate surgical candidate; and
- Incontinence is not related to a neurologic condition.

Based on review of available data, the Company may consider permanent implantation of a sacral nerve neuromodulation (SNM) device in patients who meet all of the following criteria to be eligible for coverage:

- All of the criteria above are met; and
- A trial stimulation period demonstrates at least 50% improvement in symptoms over a period of at least 48 hours.

When Services Are Considered Investigational

Coverage is not available for investigational medical treatments or procedures, drugs, devices or biological products.

Based on review of available data, the Company considers other urinary/voiding applications of sacral nerve neuromodulation (SNM), including but not limited to treatment of stress incontinence or urge incontinence due to a neurologic condition, e.g., detrusor hyperreflexia, multiple sclerosis, spinal cord injury, or other types of chronic voiding dysfunction to be investigational.*
Fecal Incontinence

When Services May Be Eligible for Coverage

Coverage for eligible medical treatments or procedures, drugs, devices or biological products may be provided only if:

- Benefits are available in the member’s contract/certificate, and
- Medical necessity criteria and guidelines are met.

Based on review of available data, the Company may consider a trial period of sacral nerve neuromodulation (SNM) with either percutaneous nerve stimulation or a temporarily implanted lead in patients who meet all of the following criteria to be eligible for coverage:

- There is a diagnosis of chronic fecal incontinence of greater than 2 incontinent episodes on average per week with duration greater than 6 months or for more than 12 months after vaginal childbirth; and
- There is documented failure or intolerance to conventional conservative therapy (e.g., dietary modification, the addition of bulking and pharmacologic treatment for at least a sufficient duration to fully assess its efficacy; and
- The patient is an appropriate surgical candidate; and
- The condition is not related to an anorectal malformation (e.g., congenital anorectal malformation; defects of the external anal sphincter over 60 degrees; visible sequelae of pelvic radiation; active anal abscesses and fistulae) or chronic inflammatory bowel disease; and
- Incontinence is not related to a neurologic condition; and
- The patient has not had rectal surgery in the previous 12 months, or in the case of cancer, the patient has not had rectal surgery in the past 24 months.

Based on review of available data, the Company may consider permanent implantation of a sacral nerve neuromodulation (SNM) device in patients who meet all of the following criteria to be eligible for coverage:

- All of the criteria above are met; and
- A trial stimulation period demonstrates at least 50% improvement in symptoms over a period of at least 48 hours.

When Services Are Considered Investigational

Coverage is not available for investigational medical treatments or procedures, drugs, devices or biological products.

Based on review of available data, the Company considers sacral nerve neuromodulation (SNM) in the treatment of chronic constipation or chronic pelvic pain to be investigational.*

Background/Overview

Treatment using SNM, also known as indirect sacral nerve stimulation (SNS), is one of several alternative modalities for patients with fecal or urinary incontinence (urge incontinence, significant symptoms of urgency-frequency, nonobstructive urinary retention) who have failed behavioral (e.g., prompted voiding) and/or pharmacologic therapies. Urge incontinence is defined as leakage of urine when there is a strong
urge to void. Urgency-frequency is an uncontrollable urge to urinate, resulting in very frequent, small volumes and is a prominent symptom of interstitial cystitis (also called bladder pain syndrome). Urinary retention is the inability to completely empty the bladder of urine. Fecal incontinence can arise from a variety of mechanisms, including rectal wall compliance, efferent and afferent neural pathways, central and peripheral nervous systems, and voluntary and involuntary muscles. Fecal incontinence is more common in women, due mainly to muscular and neural damage that may occur during vaginal delivery.

The SNM device consists of an implantable pulse generator that delivers controlled electrical impulses. This pulse generator is attached to wire leads that connect to the sacral nerves, most commonly the S3 nerve root. Two external components of the system help control the electrical stimulation. A control magnet is kept by the patient and can be used to turn the device on or off. A console programmer is kept by the physician and used to adjust the settings of the pulse generator.

Before implantation of the permanent device, patients undergo an initial testing phase to estimate potential response to treatment. The first type of testing developed was percutaneous nerve evaluation (PNE). This procedure is done with the patient under local anesthesia, using a test needle to identify the appropriate sacral nerve(s). Once identified, a temporary wire lead is inserted through the test needle and left in place for 4 to 7 days. This lead is connected to an external stimulator, which is carried by patients in their pocket or on their belt. The results of this test phase are used to determine whether patients are appropriate candidates for the permanent device. If patients show a 50% or greater reduction in symptom frequency, they are deemed eligible for the permanent device.

The second type of testing is a 2-stage surgical procedure. In the first stage, a quadripolar-tined lead is implanted (stage 1). The testing phase can last as long as several weeks, and if patients show a 50% or greater reduction in symptom frequency, they can proceed to stage 2 of the surgery, which is permanent implantation of the neuromodulation device. The 2-stage surgical procedure has been used in various ways. These include its use instead of PNE, for patients who failed PNE, for patients with an inconclusive PNE, or for patients who had a successful PNE to further refine patient selection.

The permanent device is implanted with the patient under general anesthesia. An incision is made over the lower back, and the electrical leads are placed in contact with the sacral nerve root(s). The wire leads are extended through a second incision underneath the skin, across the flank to the lower abdomen. Finally, a third incision is made in the lower abdomen where the pulse generator is inserted and connected to the wire leads. Following implantation, the physician programs the pulse generator to the optimal settings for that patient. The patient can switch the pulse generator between on and off by placing the control magnet over the area of the pulse generator for 1 to 2 seconds.

FDA or Other Governmental Regulatory Approval

U.S. Food and Drug Administration (FDA)

In 1997, the Medtronic InterStim Sacral Nerve Stimulation system received FDA approval for marketing for the indication of urinary urge incontinence in patients who have failed or could not tolerate more conservative treatments. In 1999, the device received FDA approval for the additional indications of urgency-frequency and urinary retention in patients without mechanical obstruction. In 2006, the Medtronic InterStim II System received FDA approval for treatment of intractable cases of overactive bladder and
Sacral Nerve Neuromodulation/Stimulation

Policy # 00108
Original Effective Date: 03/25/2002
Current Effective Date: 06/21/2017

urinary retention. The new device is smaller and lighter than the original system and is reported to be suited for those with lower energy requirements or small stature. The device also includes updated software and programming options. In 2011, the Medtronic InterStim System received FDA approval for the indication of chronic fecal incontinence in patients who have failed or could not tolerate more conservative treatments. The InterStim device has not been specifically approved by FDA for treatment of chronic pelvic pain. FDA product code: EZW.

Note: This policy does not address pelvic floor stimulation, which refers to electrical stimulation of the pudendal nerve. In addition, this policy does not address devices that provide direct SNS in patients with spinal cord injuries.

Centers for Medicare and Medicaid Services (CMS)
Effective January 1, 2002, SNS is covered for the treatment of urinary urge incontinence, urgency-frequency syndrome, and urinary retention. SNS involves both a temporary test stimulation to determine if an implantable stimulator would be effective and a permanent implantation in appropriate candidates. Both the test and the permanent implantation are covered.

The following limitations for coverage apply to all 3 indications:
- Patients must be refractory to conventional therapy (documented behavioral, pharmacologic and/or surgical corrective therapy) and be appropriate surgical candidates such that implantation with anesthesia can occur.
- Patients with stress incontinence, urinary obstruction, and specific neurologic diseases (eg, diabetes with peripheral nerve involvement) that are associated with secondary manifestations of the above three indications are excluded.
- Patients must have had successful test stimulation in order to support subsequent implantation. Before patients are eligible for permanent implantation, they must demonstrate a 50% or greater improvement through test stimulation.
- Improvement is measured through voiding diaries. Patients must be able to demonstrate adequate ability to record voiding diary data such that clinical results of the implant procedure can be properly evaluated.

Rationale/Source
Assessment of efficacy for therapeutic interventions involves a determination of whether the intervention improves health outcomes. The optimal study design for a therapeutic intervention is a randomized controlled trial (RCT) that includes clinically relevant measures of health outcomes. For conditions such as urinary incontinence and chronic pelvic pain, where clinical success if often measured by subjective outcomes such as urinary urge and pain, placebo- or sham-controlled randomized trials are needed to demonstrate that the intervention has a benefit beyond the placebo effect.

Urinary Incontinence
Several RCTs on SNM for urinary incontinence have been conducted. The first RCT was sponsored by Medtronic and submitted to the U.S. FDA as part of the approval process. Findings have not otherwise been published. Based on this RCT, the 1998 TEC Assessment concluded that SNM reduced urge
incontinence compared with control patients. The trial was well-designed, using standardized clinical and functional status outcomes measurements, enrolled patients with severe urge incontinence who had failed extensive prior treatments. The magnitude of effect (approximately one-half of patients became dry, three-quarters experienced at least 50% reduction in incontinence) was fairly large, probably at least as great as with surgical procedures, and larger than expected from a placebo effect or from conservative measures such as behavioral therapy or drugs. The therapy evaluation test, in which the device is turned off (i.e., sham treatment is provided) and patients thus serve as their own controls, provided further evidence that the effect on incontinence is due to electrical stimulation and demonstrates that the effect of SNM is reversible. The cohort analysis of the clinical trial provides some evidence that the effect of SNM is maintained for up to 2 years. There was a high rate of adverse events reported in this clinical trial. Most of the adverse events were minor and reversible; however, approximately one-third of patients required surgical revision for pain at the operative sites or migration of the leads.

In this RCT, 177 of 581 patients had urinary retention. Patients with urinary retention reported significant improvements in terms of volume catheterized per catheterization, a decrease in the number of catheterizations per day, and increased total voided volume per day. At 12 months postimplant, 61% of patients had eliminated the use of catheterization. A total of 220 of 581 (38%) had significant urgency-frequency symptoms. After 6 months, 83% of patients with urgency-frequency symptoms reported increased voiding volumes with the same or reduced degree of frequency. At 12 months, 81% of patients had reached normal voiding frequency. Compared with a control group, patients with implants reported significant improvements in quality of life (QOL), as evaluated by the Short-Form 36-Item Health Survey.

An additional prospective RCT of 44 patients with urge incontinence was published in 2000. At 6 months, the implant group showed significantly greater improvement on standardized clinical outcomes, compared with those receiving conservative therapy. The magnitude of effect was substantial.

In 2014, an RCT was published by Siegel et al; this was an industry-sponsored FDA-mandated postapproval study and is known as the Insite trial. This study compared SNM using a 2-stage surgical procedure with standard medical therapy. Study inclusion criteria included a diagnosis of overactive bladder (at least 8 voids per day and/or at least 2 involuntary leaking episodes in 72 hours) and a failed trial of at least 1 anticholinergic or antimuscarinic medication. In addition, there needed to be at least 1 such medication that had not yet been attempted. Patients with neurologic diseases and with primary stress incontinence were excluded. A total of 70 patients were allocated to SNM and 77 to standard medical therapy. Of the 70 patients in the SNM group, 11 elected not to receive test stimulation with the tined lead and 8 received the lead but did not receive a full system implant due to lack of response to a 14-day test stimulation period (response was defined as at least a 50% reduction in average leaks and/or voids). Patients in the medical treatment group tried the next recommended medication or restarted a discontinued medication. Therapeutic success was defined as at least a 50% improvement in average leaks/day or at least a 50% improvement in the number of voids per day or a return to fewer than 8 voids per day. In an intention-to-treat analysis, the therapeutic success rate at 6 months was 61% in the SNM group and 42% in the standard medical treatment group; the difference between groups was statistically significant (p=0.02). QOL at 6 months was a secondary outcome. Several validated QOL scales were used, and all favored the SNM group compared with the standard medical treatment group (p<0.002 for all comparisons).
Twelve-month follow-up of the Insite trial were published by Noblett et al in 2014. The analysis included patients included in the SNS group of initial RCT plus additional patients enrolled and implanted in the interim. A total of 340 patients underwent test stimulation, 272 underwent implantation, and 255 completed 12 months of follow-up. In a modified completers’ analysis, the therapeutic success rate was 82%. This modified completers’ analysis included patients who were implanted and had either a baseline or 12-month evaluation, or withdrew from the trial due to a device-related adverse event or lack of efficacy. In an analysis limited to study completers, the therapeutic response rate was 85%. The Noblett analysis did not include data from the control group of patients receiving only standard medical therapy.

In 2016, Amundsen et al reported on an RCT comparing intradetrusor injection of onabotulinumtoxinA (n=192) with SNM (n=189) in women with refractory urgency urinary incontinence, defined as at least 1 supervised behavioral or physical therapy intervention and the use of a minimum of 2 anticholinergics (or inability to tolerate or contraindications to the medication). In ITT analysis, patients in the onabotulinumtoxinA-treated group had greater reductions in urge incontinence per day (3.9 per day) than in the SNM-treated group (3.3 per day; mean difference, 0.63; 95% confidence interval [CI], 0.13 to 1.14; p=0.01). OnabotulinumtoxinA-treated patients had greater reductions in some overactive bladder-related QOL questionnaire-related measures, although the clinical meaningfulness of the changes was uncertain. Patients in the onabotulinumtoxinA-treated group were more likely to have urinary tract infections (35% vs 11%; risk difference, -23%; 95% CI, -33% to -13%; p<0.001).

Case Series

In addition to the RCTs, case series have been published in recent years and some had longer follow-up than the RCTs. For example, a 2011 series by Groen et al in The Netherlands reported the longest follow-up. A total of 60 patients had at least 5 years of follow-up after SNM for refractory idiopathic urge urinary incontinence. Success was defined as at least a 50% decrease in the number of incontinent episodes or pads used per day. The success rate was 52 of 60 (87%) at 1 month and gradually decreased to 37 (62%) at 5 years. The number of women who were completely continent was 15 (25%) at 1 month and 9 (15%) at 5 years. At the 5-year follow-up, SNM was still used by 48/60 (80%) women. A total of 57 adverse events were reported in 32 of 60 (53%) patients. The most frequent adverse events were hardware-related or pain or discomfort. There were a total of 23 reoperations in 15 patients. In most cases, pain problems were managed conservatively.

Findings from a large prospective series were reported in 2009 by White et al. The study focused on complications associated with SNM in 202 patients with urge incontinence, urinary urgency, or urinary retention. At a mean follow-up of 37 months (range, 7-84), 67 patients (30%) had experienced adverse events that required either lead or implantable pulse generator revisions. Complications included pain (3%), device malfunction secondary to trauma (9%), infection (4%), postoperative hematoma (2%), and lead migration (6%). In addition, 5% of patients underwent elective removal, 4% had device removal due to lack of efficacy, and 2% required removal due to battery expiration. At the last follow-up, 172 patients (85%) had functional implanted units.
Data from RCTs and case series with long-term follow-up suggest that SNM reduces symptoms of urge incontinence, urgency-frequency syndrome, nonobstructive urinary retention, and overactive bladder in selected patients.

Fecal Incontinence

Systematic Reviews

In 2015, Thaha et al published a Cochrane review on SNS for fecal incontinence and constipation in adults, which included randomized, quasi-randomized, and crossover trials. For fecal incontinence, reviewers included 6 trials of SNM (n=219 patients), 2 of which used parallel-group designs (Thin et al [2015], Tjandra et al [2008]; the latter described below); the others used crossover designs. The primary methodologic quality issue noted was a lack of clarity involving randomization techniques and allocation concealment. Reviewers concluded: “The limited evidence from the included trials suggests that SNS can improve continence in a proportion of patients with faecal incontinence.”

In 2013, Thin et al published a systematic review of randomized trials and observational studies on SNM for treating fecal incontinence. A total of 61 studies met eligibility criteria; including at least 10 patients, having a clear follow-up interval and reporting the success rate of therapy based on a 50% or greater improvement in fecal incontinence episodes. Only 2 of the studies were RCTs (Tjandra et al and Leroi et al studies, described next) and 50 were prospective case series. Data from 2 studies with long-term follow-up could be pooled to calculate median success rates using an intention-to-treat analysis. These median success rates were 63% in the short term (no more than 12 months of follow-up), 58% in the medium term (12-36 months), and 54% in the long term (>36 months). The per-protocol short-, medium-, and long-term success rates were 79%, 80%, and 84%, respectively.

Previously, in 2011, Tan et al published a meta-analysis of studies SNM for treating fecal incontinence. They identified a total of 34 studies that reported on at least 1 of their outcomes of interest and clearly documented how many patients underwent temporary and permanent SNM. Only 1 of these studies was an RCT (Tjandra et al). In the 34 studies, a total of 944 patients underwent temporary SNS and 665 subsequently underwent permanent SNS implantation. There were 279 patients who did not receive permanent implantation, and 154 of these were lost to follow-up. Follow-up in the studies ranged from 2 weeks to 35 weeks. In a pooled analysis of findings of 28 studies, there was a statistically significant decrease in incontinence episodes per week with SNM compared with maximal conservative therapy (weighted mean difference = -6.83; 95% confidence interval [CI], -8.05 to -5.60; p<0.001). Fourteen studies reported incontinence scores, and when these results were pooled, there was also a significantly greater improvement in scores with SNS compared with conservative therapy (weighted mean difference = -10.57; 95% CI, -11.89 to -9.24; p<0.001).

In 2011, Maeda et al published a systematic review of studies on complications following permanent implantation of a SNS device for fecal incontinence and constipation. Reviewers identified 94 articles. Most addressed fecal incontinence. A combined analysis of data from 31 studies on SNS for fecal incontinence reported a 12% suboptimal response to therapy (149/1232 patients). A review of complications reported in the studies found that the most commonly reported complication was pain around the site of implantation,
with a pooled rate of 13% (81/621 patients). The most common response to this complication was repositioning the stimulator, followed by device explantation and reprogramming. The second most common adverse event was infection, with a pooled rate of 4% (40/1025 patients). Twenty-five (63%) of the 40 infections led to device explantation.

Randomized Controlled Trials

In 2008, Tjandra et al published an RCT with 120 patients with severe fecal incontinence. Patients were randomly assigned to receive SNS or best supportive therapy, consisting of pelvic floor exercises with biofeedback, bulking agents, and dietary management with a team of dieticians. Exclusion criteria included neurologic disorders and external anal sphincter defects of more than 120 degrees of the circumference, although a “high proportion” of the patients had pudendal neuropathy. The study was not blinded. Of the 60 patients randomized to SNS, 54 (90%) had successful test stimulation and 53 decided to proceed with implant of the pulse generator. At baseline, the SNS group had an average of 9.5 incontinent episodes per week, and the controls had 9.2. Both groups had an average of 3.3 days per week with incontinence. At 12-month follow-up, episodes had decreased to 1 day per week with 3.1 episodes in the SNS group, but had not changed in the control group (mean, 3.1 d/wk with 9.4 episodes). Complete continence was achieved in 22 of the 53 SNS patients (42%) and 13 patients (24%) improved by 75% to 99%. None of the patients had worsening of fecal continence. Adverse events included pain at implant site (6%), seroma (2%), and excessive tingling in the vaginal region (9%).

In 2005, Leroi et al in France published an industry-supported double-blind randomized crossover study. Thirty-four patients had successful temporary percutaneous stimulation and underwent permanent implantation of an SNM device. Following a 1- to 3-month postimplantation period in which the device was turned on, patients had their device turned on for 1 month and off for 1 month, in random order. A total of 24 patients (71%) of randomized patients completed the study. There was a statistically significantly greater decrease in fecal incontinence episodes with the device turned on (p=0.03). However, there was also a large decrease in incontinent episodes for the placebo group. The median frequency of fecal incontinence episodes decreased by 90% when the device was in the on position; it decreased by 76% when the device was in the off position.

Prospective Noncomparative Studies

A key observational study was the 16-site multicenter FDA investigational device exemption study of SNS in 120 patients with fecal incontinence. Findings were initially reported by Wexner et al in 2010. To be included in the study, patients had to complain of chronic fecal incontinence with duration greater than 6 months or for more than 12 months after vaginal childbirth, defined as greater than 2 incontinent episodes on average per week. All patients had failed or were not candidates for more conservative treatments. Exclusion criteria included congenital anorectal malformation; previous rectal surgery, if performed within the last 12 months (or 24 months in case of cancer); defects of the external anal sphincter over 60 degrees; chronic inflammatory bowel disease; visible sequelae of pelvic radiation; active anal abscesses and fistulae; neurologic diseases such as clinically significant peripheral neuropathy or complete spinal-cord injury; and anatomic limitations preventing the successful placement of an electrode. A total of 285 patients were evaluated for potential enrollment; 133 were enrolled and underwent acute test stimulation, and 120 showed at least 50% improvement during the test phase and received a permanent stimulator. Thirty-four of
the 120 patients exited the study for a variety of reasons both related (ie, lack of efficacy in 6, implant site infection or skin irritation in 5) and unrelated to the implant (ie, death of a local principal investigator). Analysis based on the initial 133 patients showed a 66% success rate (≥50% improvement), while analysis based on 106 patients who were considered completed cases at 12 months showed an 83% success rate. The success rate based on the 120 patients who received a permanently implanted stimulator would fall between these 2 figures. Of 106 cases included in the 12-month results, perfect continence (100% improvement) was reported in approximately 40%, while an additional 30% of patients achieved 75% or greater improvement in incontinent episodes. Success was lower in patients with an internal anal sphincter defect (65% [n=20]) compared with patients without a defect (87% [n=86]).

Three- and 5-year findings were subsequently published. In 2011, Mellgren et al reported on the 120 patients who received a permanently implanted stimulator. Mean length of follow-up was 3.1 years, and 83 (69%) completed at least part of the 3-year follow-up assessment. In an intention-to-treat analysis using the last observation carried forward, 79% of patients experienced at least a 50% reduction in the number of incontinent episodes per week compared with baseline, and 74% experienced at least a 50% reduction in the number of incontinent days per week. In a per-protocol analysis at 3 years, 86% of patients experienced at least a 50% reduction in the number of incontinent episodes per week, and 78% experienced at least a 50% reduction in the number of incontinent days per week. By the 3-year follow-up, a total of 334 adverse events that were potentially device-related had been reported in 99 patients; 67% of these occurred within the first year. The most frequently reported adverse events among the 120 patients were implant site pain (28%), paresthesia (15%), implant site infection (10%), diarrhea (6%), and extremity pain (6%). Six infections required surgical intervention (5 device removals and 1 device replacement). In 2012, Hull et al reported outcomes in 72 patients (60% of the 120 implanted patients) who had completed a 5-year follow-up visit. Sixty-four (89%) of the patients who contributed bowel diary data at 5 years had at least a 50% improvement from baseline in weekly incontinent episodes, and 26 of the 72 patients (36%) had achieved total continence. It is uncertain whether outcomes differed in the 40% of patients who were missing from the 5-year analysis.

A 2015 study by Altomare et al also reported long-term outcome (minimum, 60-month follow-up; median, 84-month follow-up) in patients implanted with a sacral nerve stimulator for fecal incontinence. Patients were identified from a European registry and surveyed. Long-term success was defined as maintaining the temporary stimulation success criteria, ie, at least 50% improvement in the number of fecal incontinence episodes (or fecal incontinence symptom score) at last follow-up, compared with baseline. A total of 272 patients underwent permanent implantation of an SNS device and 228 were available for follow-up. A total of 194 (71.3%) of the 272 patients with implants maintained improvement in the long term.

Section Summary Fecal Incontinence
The evidence base consists of 2 RCTs, observational studies including several with long-term follow-up and systematic reviews of RCTs and uncontrolled studies. Taken together, findings of these studies suggest that SNM/SNS improves outcomes when used for the treatment for chronic fecal incontinence in well-selected patients who have failed conservative therapy.
Systematic Reviews

In the 2015 Cochrane review by Thaha et al on SNS for fecal incontinence and constipation in adults, 2 trials on SNM for constipation were included (Dinning et al [2015], and a crossover trial). In 1 trial, the time with abdominal pain and bloating decreased during the "on" period from 79% to 33%. However, in the larger Dinning study, there was no improvement with SNM during the "on" period. Reviewers concluded: “SNS did not improve symptoms in patients with constipation.”

In 2013, Thomas et al published a systematic review of controlled and uncontrolled studies evaluating SNS for treatment of chronic constipation. The authors identified 11 case series and 2 blinded crossover studies. Sample sizes in the case series ranged from 4 to 68 patients implanted with a permanent SNS device; in 7 of the 11 studies, fewer than 25 patients underwent SNS implantation. Among the 2 crossover studies, one included 2 patients implanted with an SNS device. The other, a 2012 study by Knowles et al, evaluated temporary stimulation in only 14 patients. Patients were included if they were diagnosed with evacuatory dysfunction and rectal hyposensitivity and had failed maximal conservative treatment. They were randomized to 2 weeks of stimulation with the SNS device turned on and 2 weeks with the SNS device turned off, in random order. There was no wash-out period between treatments. The primary efficacy outcome was change in rectal sensitivity and was assessed using 3 measures of rectal sensory thresholds. The study found a statistically significantly greater increase in rectal sensitivity with the device turned on in 2 of the 3 measures. Among the secondary outcome measures, there was a significantly greater benefit of active treatment on the percentage of successful bowel movements per week and the percentage of episodes with a sense of complete evacuation. In addition to its small sample size, the study was limited by the lack of a washout period between treatments (ie, there could have been a carryover effect when the device was used first in the on position). Moreover, the authors noted that the patients were highly selected; only 14 of the approximately 1800 patients approached met the eligibility criteria and agreed to participate in the study.

Randomized Controlled Trials

In 2016, Zerbib et al reported on a double-blind crossover RCT of SNS in 36 women with refractory constipation. Subjects were eligible if they had chronic constipation (>1 year), with 2 or fewer bowel movements per week, straining to evacuate with more than 25% of attempts, or sensation of incomplete evacuation with more than 25% of attempts, with lack of response to standard therapies. Thirty-six subjects meeting inclusion criteria underwent an initial peripheral nerve evaluation (PNE); those who had adequate symptom improvement to a predefined level were offered permanent SNS implant. After a 2-week washout, subjects were randomized to “on” or “off” for 8 weeks, followed by a 2-week washout, when the groups crossed over. Of the 36 patients enrolled, 20 responded and underwent randomization. Four were excluded (2 due to wound infection, 1 each due to withdrawal of consent and lack of compliance). At 1-year follow-up, a positive response was observed in 12 of 20 and 11 of 20 patients after active and sham stimulation periods, respectively (p=0.746).

A larger randomized crossover trial was published by Dinning et al in 2015. The study included patients aged 18 to 75 years with slow transit constipation. Potentially eligible patients completed a 3-week stool diary and, in order to continue participating, they needed to indicate in the diary that they had complete bowel movements less than 3 days per week for at least 2 of the 3 weeks. Patients with metabolic, neurogenic or endocrine disorders known to cause constipation were excluded. Fifty-seven met eligibility
criteria and had temporary PNE, and 55 underwent permanent implantation. In random order, patients received active stimulation (subsensory in phase 1, suprasensory in phase 2) or sham stimulation (device was on, but pulse width and frequency was set to 0). The primary outcome measure, determined by stool diaries, was a bowel movement with feelings of complete evacuation more than 2 days per week for at least 2 of 3 weeks; it was only assessed in phase 2. Compared with sham stimulation, 16 of 54 patients (29.6%) met the primary outcome during suprasensory stimulation and 11 of 53 patients (20.8%) met it during sham stimulation; the difference was not statistically significant (p=0.23). Other outcomes did not differ significantly with suprastimulation versus sham stimulation and outcomes did not differ in the phase 1 comparison of subsensory versus sham stimulation.

Case Series
One of the larger case series was published in 2010 by Kamm et al. This was a prospective study conducted at multiple sites in Europe. The study included 62 patients who had idiopathic chronic constipation lasting at least 1 year and had failed medical and behavioral treatments. Constipation was defined as at least 1 of the following: fewer than 2 bowel movements per week, straining to evacuate in at least 25% of attempts or a sensation of incomplete evacuation on at least 25% of occasions. Forty-five of the 62 (73%) met criteria for permanent implantation during the 3-week trial period. Criteria included an increase in evacuation frequency to at least 3 per week, or a 50% reduction in either frequency of straining during evacuation or in episodes with sensation of incomplete evacuation. After a median follow-up of 28 months (range, 1-55 months) after permanent implantation, 39 of 45 (87%) patients were classified as treatment successes (ie, met same improvement criteria as were used to evaluate temporary stimulation). There was a significant increase in the frequency of bowel movements from a median of 2.3 per week at baseline to 6.6 per week at latest follow-up (p<0.001). The frequency of spontaneous bowel movements (ie, without use of laxatives or other stimulation) increased from a median of 1.7 per week at baseline to 4.3 per week at last follow-up (p=0.001). A total of 101 adverse events were reported; 40 (40%) of these were attributed to the underlying constipation or an unrelated diagnosis. Eleven serious adverse events related to treatment were reported (the authors did not specify whether any patients experienced more than 1 serious event). The serious adverse events included a deep postoperative infection (n=2), superficial erosion of lead through the skin (n=1), persistent postoperative pain at the site of implantation (n=2), conditions leading to lead revision (n=4), and device failure (n=2). The study has been criticized for including a large number of patients who had more than 2 bowel movements per week at study entry.

An additional study, published by Maeda et al in 2010, focused on reporting adverse events. The study was a chart review and included 38 patients with constipation who received permanent SNS after a successful trial period. At the time that charts were reviewed, a mean of 25.7 months had elapsed since implantation. A total of 58 reportable events were identified in 22 of the 38 (58%) patients. A median of 2 (range, 1-9) events per patient were reported; 26 of 58 events (45%) were reported in the first 6 months after device implantation. The most common reportable events were lack or loss of efficacy (26 of 58 events, 45%), and pain (16 events, 28%). Twenty-eight (48%) of the events were resolved by reprogramming. Surgical interventions were required for 19 (33%) of the events, most commonly permanent electrode replacement (14 events). Three of 38 (8%) patients discontinued use of the device due to reportable events.
Sacral Nerve Neuromodulation/Stimulation

Policy # 00108
Original Effective Date: 03/25/2002
Current Effective Date: 06/21/2017

Four randomized crossover studies are available; 2 had very small sample sizes and the third and fourth did not find significant differences in outcomes when active SNS was compared with sham stimulation. There are also several, mainly small, case series. Collectively, this represents insufficient evidence to permit scientific conclusions about the effect of SNM or SNS on health outcomes in patients with constipation.

CHRONIC PELVIC PAIN

A 2013 systematic review of studies on nerve stimulation for chronic pelvic pain did not identify any RCTs on SNS for treatment of chronic pelvic pain or bladder pain. The published evidence is limited to case series. For example, Martellucci et al (2012) reported on 27 patients with chronic pelvic pain (at least 6 months) who underwent testing for SNM implantation. After a 4-week temporary stimulation phase, 16 (59%) of 27 patients underwent implantation of an InterStim device. In the 16 implanted patients, mean pain on a visual analog scale was 8.1 before implantation and 2.1 at the 6- and 12-month follow-ups. An earlier study by Siegel et al (2001) reported on 10 patients and stated that 9 of them experienced a decrease in pain with SNS stimulation.

Section Summary: Chronic Pelvic Pain

Data from several small case series with heterogenous patient samples represents insufficient evidence on the effect of SNM and SNS on health outcomes in patients with chronic pelvic pain. Randomized controlled trials are needed, especially with sham controls, reporting pain as the primary outcome.

TRIAL STIMULATION TECHNIQUES

As described in the Background section, there are 2 types of trial stimulation before permanent implantation of a neuromodulation device. They are PNE and stage 1 (lead implantation) of a 2-stage surgical procedure. PNE was the initial method of trial stimulation and has been the standard of care before permanent implantation of the device. In review articles such as Baxter and Kim (2010), lead migration was described as a potential problem with the PNE technique, but no studies were identified that quantified the rate of lead migration in large numbers of patients. The 2-stage surgical procedure is an alternative trial stimulation modality.

Comparative rates of lead migration and rates of progressing to permanent implantation are useful outcomes in that there may be reduced sensitivity of the PNE test due to lead dislodgement. However, due to the potential placebo effect of testing, it is also important to compare the long-term efficacy of SNM after these 2 trial stimulation techniques. In addition, it would be useful to have data on the optimal approach to using the 2-stage surgical procedure. As mentioned in the Background section, the 2-stage surgical procedure has been used in various ways, including for patients who failed PNE, for patients with an inconclusive PNE, and for patients who had a successful PNE to further refine patient selection.

No RCTs were identified that evaluated long-term health outcomes (eg, reduction in incontinence symptoms) after trial stimulation with PNE versus stage-1 lead implantation. There are limited data on the rates of failure after SNM in patients selected using the 2-stage test. Leong et al (2011), in a single-center prospective study, evaluated 100 urge incontinence patients with both PNE and the first stage of the 2-stage technique (ie, patients served as their own controls). Patients were first screened with the PNE and, afterward, with lead implantation. Response to testing was based on diary data for 3 consecutive days after
receiving each type of lead. In the test phase, 47 (47%) patients had a positive response to PNE, and 69 (69%) had a positive response to the first-stage lead placement test. All patients who responded to PNE also responded to stage-1 testing. The 69 patients who responded to stage-1 testing underwent implantation. They were then followed for a mean of 26 months, and 2 patients (3% of those with a positive test) had failed therapy. Although this study showed a low rate of failure, only 22 subjects had a successful test with the stage-1 technique but not with PNE. This is a small number of patients on which to base conclusions about the comparative efficacy of the 2 techniques. In addition, the order of testing could have impacted findings. All patients had PNE testing before first-stage lead implantation and could have been biased by their first test. Stronger study designs would be to randomize the order of testing or to randomize patients to receive 1 type of testing or the other.

In 2002, Scheepens et al analyzed 15 patients with urinary incontinence or retention who had a good initial response to PNE but then failed PNE in the longer term (ie, days 4-7 of testing). These 15 patients underwent stage 1 of the 2-stage technique. One patient failed the first stage and was explanted. Of the remaining 14 patients, 2 were explanted later due to lack of efficacy of SNM. The other 12 patients were followed for a mean of 4.9 years and voiding diary data showed improvement in nearly all incontinence symptoms. There was a low failure rate after stage-1 testing, but this is a small sample size, and stage-1 testing was not compared with another trial stimulation method (eg, PNE).

In 2010, Marcelissen et al published findings in 92 patients with urinary symptoms who underwent trial evaluation for SNM treatment. Patients initially underwent PNE (n=76) or stage-1 surgery (n=16). Patients who had a negative PNE (n=41) then underwent stage-1 evaluation. Eleven (63%) of 16 patients had a positive initial stage-1 test and were implanted with a SNM device. Thirty-five (46%) of 76 patients had a positive initial PNE test and underwent permanent implantation. There were 41 (54% of those undergoing PNE) patients who had a negative test and then had stage-1 surgical evaluation. Eighteen (44%) of 41 had a positive stage-1 test and underwent implantation. Altogether there were 64 patients who underwent implantation of an SNM device. Mean follow-up was 51 months. Thirty-eight (59%) of 64 patients implanted experienced clinical success at last follow-up, defined as more than 50% improvement in symptoms reported in a voiding diary. Clinical success rate was not reported separately by trial stimulation method.

Several studies (eg, Borawski et al [2007] and Bannowsky et al [2008]) compared response rates during the test phase in patients with urinary incontinence symptoms and found higher response rates with the stage-1 test than with PNE. In these studies, more people who received the stage-1 test went on to undergo implantation. The Borawski study was an RCT with 30 patients (13 received PNE, 17 received the stage-1 test). The Bannowsky study was not randomized; 42 patients received a PNE and 11 patients received a stage-1 test. Neither study, however, followed patients once they had a device implanted, so they did not provide data on the relative success rates of SNM after these 2 test procedures. With this type of study (ie, without follow-up after implantation), it is not possible to conclude whether the 2-stage procedure reduced false negatives (ie, selected more people who might benefit) or increased false negatives (ie, selected more people who might go on to fail).

No published studies were identified that compared different trial stimulation techniques in patients with nonurinary conditions (eg, fecal incontinence).
SUMMARY OF EVIDENCE

For individuals with urinary incontinence who have failed conservative treatment who receive SNM, the evidence includes RCTs, systematic reviews, and case series. Relevant outcomes are symptoms, morbidity events, and treatment-related morbidity. Results from the RCTs and case series with long-term follow-up have suggested that SNM reduces symptoms of urge incontinence, urgency-frequency syndrome, nonobstructive urinary retention, and overactive bladder in selected patients. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

For individuals with fecal incontinence who have failed conservative treatment who receive SNM, the evidence includes RCTs and systematic reviews. Relevant outcomes are symptoms, morbidity events, and treatment-related morbidity. Although relatively small, the available trials had a low risk of bias and demonstrated improvements in incontinence relative to alternatives. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome. For individuals with constipation who have failed conservative treatment who receive SNM, the evidence includes RCTs and systematic reviews. Relevant outcomes are symptoms, morbidity events, and treatment-related morbidity. The available trials have not consistently reported improvements in outcomes with SNM. Additional studies are needed to demonstrate the health benefits of this technology. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals with chronic pelvic pain who receive SNM, the evidence is limited. Relevant outcomes are symptoms, morbidity events, and treatment-related morbidity. The evidence is insufficient to determine the effects of the technology on health outcomes.

References

Sacral Nerve Neuromodulation/Stimulation

Policy # 00108
Original Effective Date: 03/25/2002
Current Effective Date: 06/21/2017

Policy History
Original Effective Date: 03/25/2002
Current Effective Date: 06/21/2017

03/21/2002 Medical Policy Committee review
03/25/2002 Managed Care Advisory Council approval
06/24/2002 Format revision. No substance change to policy.
10/05/2004 Medical Director review
11/16/2004 Medical Policy Committee review. Format revision. Policy focus expanded to include other pelvic floor dysfunction conditions in addition to urinary incontinence.
11/29/2004 Managed Care Advisory Council approval
10/05/2005 Medical Director review
10/27/2005 Quality Care Advisory Council approval
10/04/2006 Medical Director review
10/18/2006 Medical Policy Committee approval. Format revision; updated with additional references. Coverage eligibility unchanged.
09/05/2007 Medical Director review
09/19/2007 Medical Policy Committee approval. Coverage eligibility unchanged.
09/09/2008 Medical Director review
09/17/2008 Medical Policy Committee approval. Coverage eligibility unchanged. A note stating that a successful trial response to a peripheral nerve stimulation test is required prior to permanent placement under general anesthesia.
06/04/2009 Medical Director review
06/17/2009 Medical Policy Committee approval. Coverage eligibility unchanged.
06/03/2010 Medical Policy Committee approval
06/16/2010 Medical Policy Implementation Committee approval. Added criteria for SNM for the treatment of patients with urge incontinence, urgency-frequency and non-obstructive urinary retention to be eligible for coverage as follows:
 • The patient is an appropriate surgical candidate; and
 • A successful percutaneous test stimulation, defined as at least 50% improvement in symptoms, was performed.
Change coverage for fecal incontinence from investigational to eligible for coverage with criteria.
06/02/2011 Medical Policy Committee review
06/15/2011 Medical Policy Implementation Committee approval. Format revision; including, addition of FDA and or other governmental regulatory approval and rationale/source. Coverage eligibility unchanged.
06/14/2012 Medical Policy Committee review
06/20/2012 Medical Policy Implementation Committee approval. No change to coverage.
Sacral Nerve Neuromodulation/Stimulation

Policy # 00108
Original Effective Date: 03/25/2002
Current Effective Date: 06/21/2017

06/06/2013 Medical Policy Committee review
06/05/2014 Medical Policy Committee review
06/18/2014 Medical Policy Implementation Committee approval. No change to coverage.
06/04/2015 Medical Policy Committee review
06/17/2015 Medical Policy Implementation Committee approval. Added overactive bladder to criteria section of eligibility statement.
08/03/2015 Coding update: ICD10 Diagnosis code section added; ICD9 Procedure code section removed.
06/02/2016 Medical Policy Committee review
06/20/2016 Medical Policy Implementation Committee approval. Period of trial stimulation changed to “at least 48 hours”. The patient has not had rectal surgery in the previous 12 months, or in the case of cancer, the patient has not had rectal surgery in the past 24 months was added to the fecal incontinence criteria.
01/01/2017 Coding update: Removing ICD-9 Diagnosis Codes
06/01/2017 Medical Policy Committee review
06/21/2017 Medical Policy Implementation Committee approval. Coverage eligibility unchanged.
Next Scheduled Review Date: 06/2018

Coding

The five character codes included in the Blue Cross Blue Shield of Louisiana Medical Policy Coverage Guidelines are obtained from Current Procedural Terminology (CPT®‡), copyright 2016 by the American Medical Association (AMA). CPT is developed by the AMA as a listing of descriptive terms and five character identifying codes and modifiers for reporting medical services and procedures performed by physician.

The responsibility for the content of Blue Cross Blue Shield of Louisiana Medical Policy Coverage Guidelines is with Blue Cross and Blue Shield of Louisiana and no endorsement by the AMA is intended or should be implied. The AMA disclaims responsibility for any consequences or liability attributable or related to any use, nonuse or interpretation of information contained in Blue Cross Blue Shield of Louisiana Medical Policy Coverage Guidelines. Fee schedules, relative value units, conversion factors and/or related components are not assigned by the AMA, are not part of CPT, and the AMA is not recommending their use. The AMA does not directly or indirectly practice medicine or dispense medical services. The AMA assumes no liability for data contained or not contained herein. Any use of CPT outside of Blue Cross Blue Shield of Louisiana Medical Policy Coverage Guidelines should refer to the most current Current Procedural Terminology which contains the complete and most current listing of CPT codes and descriptive terms. Applicable FARS/DFARS apply.

CPT is a registered trademark of the American Medical Association.

Codes used to identify services associated with this policy may include (but may not be limited to) the following:

<table>
<thead>
<tr>
<th>Code Type</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPT</td>
<td>64561, 64581, 64585, 64590, 64595, 95970, 95971, 95972</td>
</tr>
<tr>
<td>HCPCS</td>
<td>A4290, C1767, C1778, C1816, C1883, C1897, E0745, L8680, L8685, L8686, L8687, L8688</td>
</tr>
</tbody>
</table>
Sacral Nerve Neuromodulation/Stimulation

Policy # 00108
Original Effective Date: 03/25/2002
Current Effective Date: 06/21/2017

*Investigational – A medical treatment, procedure, drug, device, or biological product is Investigational if the effectiveness has not been clearly tested and it has not been incorporated into standard medical practice. Any determination we make that a medical treatment, procedure, drug, device, or biological product is Investigational will be based on a consideration of the following:

A. Whether the medical treatment, procedure, drug, device, or biological product can be lawfully marketed without approval of the U.S. FDA and whether such approval has been granted at the time the medical treatment, procedure, drug, device, or biological product is sought to be furnished; or

B. Whether the medical treatment, procedure, drug, device, or biological product requires further studies or clinical trials to determine its maximum tolerated dose, toxicity, safety, effectiveness, or effectiveness as compared with the standard means of treatment or diagnosis, must improve health outcomes, according to the consensus of opinion among experts as shown by reliable evidence, including:
 1. Consultation with the Blue Cross and Blue Shield Association technology assessment program (TEC) or other nonaffiliated technology evaluation center(s);
 2. Credible scientific evidence published in peer-reviewed medical literature generally recognized by the relevant medical community; or
 3. Reference to federal regulations.

**Medically Necessary (or "Medical Necessity") - Health care services, treatment, procedures, equipment, drugs, devices, items or supplies that a Provider, exercising prudent clinical judgment, would provide to a patient for the purpose of preventing, evaluating, diagnosing or treating an illness, injury, disease or its symptoms, and that are:

A. In accordance with nationally accepted standards of medical practice;

B. Clinically appropriate, in terms of type, frequency, extent, level of care, site and duration, and considered effective for the patient's illness, injury or disease; and

C. Not primarily for the personal comfort or convenience of the patient, physician or other health care provider, and not more costly than an alternative service or sequence of services at least as likely to produce equivalent therapeutic or diagnostic results as to the diagnosis or treatment of that patient's illness, injury or disease.

For these purposes, "nationally accepted standards of medical practice" means standards that are based on credible scientific evidence published in peer-reviewed medical literature generally recognized by the relevant medical community, Physician Specialty Society recommendations and the views of Physicians practicing in relevant clinical areas and any other relevant factors.

‡ Indicated trademarks are the registered trademarks of their respective owners.

NOTICE: Medical Policies are scientific based opinions, provided solely for coverage and informational purposes. Medical Policies should not be construed to suggest that the Company recommends, advocates, requires, encourages, or discourages any particular treatment, procedure, or service, or any particular course of treatment, procedure, or service.