Melanoma Vaccines

Policy # 00368
Original Effective Date: 06/25/2013
Current Effective Date: 03/20/2019
Archived Date: 06/20/2018
Returned to Active Status: 03/20/2019

Applies to all products administered or underwritten by Blue Cross and Blue Shield of Louisiana and its subsidiary, HMO Louisiana, Inc. (collectively referred to as the “Company”), unless otherwise provided in the applicable contract. Medical technology is constantly evolving, and we reserve the right to review and update Medical Policy periodically.

Services Are Considered Investigational
Coverage is not available for investigational medical treatments or procedures, drugs, devices or biological products.

Based on review of available data, the Company considers melanoma vaccines to be investigational.*

Background/Overview
Vaccines using crude preparations of tumor material were first studied by Ehrlich over 100 years ago. However, the first modern report to suggest benefit in cancer patients did not appear until 1967. Melanoma has been viewed as a particularly promising target for vaccine treatment because of its immunologic features, which include the prognostic importance of lymphocytic infiltrate at the primary tumor site, the expression of a wide variety of antigens, and the occasional occurrence of spontaneous remissions. Melanoma vaccines can be generally categorized or prepared in the following ways:

- Whole-cell vaccines prepared using melanoma cells or crude subcellular fractions of melanoma cell lines
 - Autologous whole-cell vaccines in which tumor cells are harvested from the tissue of excised cancers, irradiated, and potentially modified with antigenic molecules to increase immunogenicity and made into patient-specific vaccines (eg, M-Vax®, AVAX Technologies)
 - Autologous heat-shock protein-peptide complexes vaccines in which a patient’s tumor cells are exposed to high temperatures and then purified to make patient-specific vaccines (eg, Oncophage®, Antigenics Inc.), and
Melanoma Vaccines

Policy # 00368
Original Effective Date: 06/25/2013
Current Effective Date: 03/20/2019
Archived Date: 06/20/2018
Returned to Active Status: 03/20/2019

- Allogeneic whole-cell vaccines in which intact or modified allogeneic tumor cell lines from other patients are lysed by mechanical disruption or viral infection and used to prepare vaccine (eg, Canvaxin®, CancerVax Corp.; or Melacine®, University of Southern California).
- Dendritic cell vaccines in which autologous dendritic cells are pulsed with tumor-derived peptides, tumor lysates, or antigen encoding RNA or DNA to produce immunologically enhanced vaccines.
- Peptide vaccines consisting of short, immunogenic peptide fragments of proteins (eg, melanoma antigen E [MAGE]; B melanoma antigen [BAGE]) used alone or in different combinations to create vaccines of varying antigenic diversity, depending on the peptide mix.
- Ganglioside vaccines in which glycolipids present in cell membranes are combined with an immune adjuvant (eg, GM2) to create vaccines.
- DNA vaccines created from naked DNA expression plasmids.
- Viral vectors in which DNA sequences are inserted into attenuated viruses for gene delivery to patient immune systems.
- Anti-idiotype vaccines made from monoclonal antibodies with specificity for tumor antigen-reactive antibodies.

FDA or Other Governmental Regulatory Approval

U.S. Food and Drug Administration (FDA)
At the present time, no melanoma vaccine has received marketing approval from the U.S. FDA.

Centers for Medicare and Medicaid Services (CMS)
There is no national coverage determination (NCD). In the absence of an NCD, coverage decisions are left to the discretion of local Medicare carriers.

Rationale/Source
In a 2011 systematic review and meta-analysis of 4375 patients in 56 phase 2 and phase 3 studies, no evidence was found that vaccine therapy yields better overall disease control or overall survival (OS) compared with other treatments. Currently, there are 12 phase 3 clinical studies that have
evaluated melanoma vaccines: 4 using allogeneic vaccines, 2 autologous whole-cell vaccines, 2 ganglioside vaccines, 1 autologous heat shock protein, and 3 peptide vaccines—1 pulsed with dendritic cells, 1 administered with ipilimumab, and 1 administered with concomitant IL-2. In 2 studies, vaccine treatments appeared to demonstrate superior performance in unique populations identified during post hoc data evaluation. However, no published study to date has shown a statistically significant survival benefit in the general population selected for study. In 2 reports, outcomes using vaccines appeared inferior to those observed in controls. Table 1 provides a summary of trials that showed lack of efficacy of melanoma vaccines.

Several explanations have been offered as to why melanoma vaccines have not produced clinically significant improvements in clinical outcomes. One possible mechanism is immune ignorance and the ability of melanoma cells to escape detection through loss of antigens or loss of HLA expression. A second mechanism is immune tolerance. This may result from the ability of the melanoma tumor to prevent a local accumulation of active helper and/or effector T cells as a result of high interstitial pressure in the tumor or lack of appropriate adhesion molecular on tumor vasculature. This may also occur as a result of normal down-regulation of the immune system at the site of T-cell tumor interaction. A wide range of immune-modulating techniques are being explored to find mechanisms for enhancing the immune response induced by tumor vaccines. One potential solution to this problem is to use molecular profiling to identify relevant immune resistance in the tumor microenvironment. If confirmed in future studies, this approach toward identifying subsets of patients likely to benefit from specific treatment choices may help improve treatment outcomes with the use of tumor vaccines.

Table 1. Phase 3 Randomized Controlled Trials of Vaccine Therapy Evaluating Cancer Outcomes

<table>
<thead>
<tr>
<th>Author</th>
<th>Patient Population</th>
<th>Vaccine</th>
<th>Control</th>
<th>Results</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Livingston et al</td>
<td>Stage III (N=122)</td>
<td>GM2/BCG</td>
<td>BCG</td>
<td>DFS and OS showed no statistically significant differences</td>
<td>Patients with no pretreatment anti-GM2 antibody showed improved PFS with vaccine</td>
</tr>
<tr>
<td>Wallack et al</td>
<td>Stage III (N=217)</td>
<td>Vaccinia melanoma oncolysate</td>
<td>Vaccinia oncolysate from normal cell</td>
<td>DFS and OS showed no statistically significant differences</td>
<td></td>
</tr>
<tr>
<td>Kirkwood et al</td>
<td>Stage IIIB/III</td>
<td>Ganglioside GM2-Interferon alfa</td>
<td>Interferon alfa</td>
<td>Trial closed after interim</td>
<td></td>
</tr>
</tbody>
</table>
Melanoma Vaccines

Policy # 00368
Original Effective Date: 06/25/2013
Current Effective Date: 03/20/2019
Archived Date: 06/20/2018
Returned to Active Status: 03/20/2019

<table>
<thead>
<tr>
<th>(2001)</th>
<th>(N=774)</th>
<th>KLH21 (GMK)</th>
<th>analysis indicated GMK inferiority</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sondak et al (2002)</td>
<td>Stage II (N=600)</td>
<td>Allogeneic melanoma vaccine (Melacine®)</td>
<td>Observation</td>
</tr>
<tr>
<td>Hersey et al (2002)</td>
<td>Stage IIIB/II (N=700)</td>
<td>Vaccinia melanoma oncolysate</td>
<td>Observation</td>
</tr>
<tr>
<td>Morton et al (2006)</td>
<td>Stage III (N=1160)</td>
<td>Canvaxin® + BCG + placebo</td>
<td>BCG + placebo</td>
</tr>
<tr>
<td>Morton et al (2006)</td>
<td>Stage IV (N=496)</td>
<td>Canvaxin® + BCG + placebo</td>
<td>BCG + placebo</td>
</tr>
<tr>
<td>Mitchell et al (2007)</td>
<td>Stage III (N=604)</td>
<td>Allogeneic whole-cell lysate administered with Detox™ (Melacine®)+ interferon alfa</td>
<td>Interferon alfa</td>
</tr>
<tr>
<td>Testori et al (2008)</td>
<td>Stage IV (N=322)</td>
<td>Heat shock protein gp96 complex vaccine (Oncophage®)</td>
<td>Physician’s choice of dacarbazine, temozolomide, IL-2, and/or resection</td>
</tr>
<tr>
<td>Schadendorf et al (2006)</td>
<td>Stage IV (N=108)</td>
<td>Peptide-pulsed dendritic cells</td>
<td>Dacarbazine</td>
</tr>
<tr>
<td>Hodi et al (2010)</td>
<td>Stage III or IV (N=676)</td>
<td>Ipilimumab alone or with GP100</td>
<td>GP100 peptide alone</td>
</tr>
<tr>
<td>Schwarzentuber et al (2011)</td>
<td>Stage III/IV (N=185)</td>
<td>GP100 peptide + IL-2</td>
<td>High-dose IL-2</td>
</tr>
</tbody>
</table>

BCG: Bacille Calmette-Guérin; DFS: disease-free survival; GMK: guanylate kinase; HLA: human leukocyte antigen; IL-2: interleukin–2; OS: overall survival.

In single-arm series published in 2013–2015, combinations of immunotherapeutic agents (nivolumab, pegylated interferon) and study vaccines have been investigated in patients with unresectable or resected stage III and IV malignant melanoma. Results from these studies suggest combined immunotherapeutic approaches are tolerable and may have clinical efficacy reflected by tumor regression. However, no valid conclusions can be drawn from this evidence as to the effectiveness of the combinations relative to other treatments.
A randomized, phase 2 clinical trial published in 2014 evaluated the activity of interleukin-2 (IL-2) alone or IL-2 in combination with allogeneic large multivalent immunogen (LMI) vaccine in patients with stage IV melanoma. The primary objective of this trial was to evaluate the effect of the treatments on progression-free survival (PFS), with a secondary objective to evaluate median OS and 1- and 2-years rates of OS. The study was halted after enrolling 21 patients after a preplanned analysis established that it was unlikely to meet its primary objective of improved PFS with additional accrual. Per-protocol analysis of data from the 21 accrued patients showed median PFS of 2.20 months in the IL-2 plus LMI group versus 1.95 months in the IL-2 controls (p=NS). Median OS was 11.89 months in the IL-2 plus LMI group and 9.97 months in the IL-2 group (p=NS).

Ongoing and Unpublished Clinical Trials

A search of the online site www.ClinicalTrials.gov in June 2015 identified a number of small phase 2 trials. Ongoing phase 3 clinical trials that might influence this review are listed in Table 2.

<table>
<thead>
<tr>
<th>NCT No.</th>
<th>Trial Name</th>
<th>Planned Enrollment</th>
<th>Completion Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ongoing</td>
<td>A Multicenter, Double-blind, Placebo-controlled, Adaptive Phase 3 Trial of POL-103A Polyvalent Melanoma Vaccine in Post-resection Melanoma Patients With a High Risk of Recurrence (MAVIS)</td>
<td>1059</td>
<td>Oct 2018</td>
</tr>
<tr>
<td></td>
<td>Randomized, Comparative Phase II/III Study Between Treatment With CSF470 Vaccine (Allogeneic, Irradiated) Plus BCG and MOLGRAMOSTIN (rhGM-CSF) as Adjuvants and Interferon-alfa 2b (IFN-ALPHA), in Stages IIB, IIC and III Post Surgery Cutaneous Melanoma Patients</td>
<td>108</td>
<td>Not provided</td>
</tr>
</tbody>
</table>

NCT: national clinical trial.
a Denotes industry-sponsored or cosponsored trial.

Summary of Evidence

The evidence for melanoma vaccines in patients who have stage II-IV melanoma includes studies on the use of new and different vaccine preparations, as well as on various forms of immune-
modulation as potential techniques for enhancing vaccine effectiveness. Relevant outcomes include overall survival, disease-specific survival, and morbid events. Despite considerable activity and numerous studies over the past 20 years, no melanoma vaccine has received U.S. FDA marketing approval. One RCT of a gp100 melanoma vaccine has reported a significant increase in response rate and progression-free survival. However, several other RCTs have reported no improvements in disease-free survival or overall survival rates with the use of study vaccines. Additionally, other RCTs were closed early due to inferiority of results with study vaccines. Other phase 3 RCTs are underway or in the planning stages to further investigate vaccine preparations to treat malignant melanoma. For use of melanoma vaccines for treatment of patients with stage II-IV melanoma, the body of evidence is insufficient to conclude that anti–melanoma vaccines of any type, alone or in combination with immunomodulating agents, significantly improve survival outcomes compared with non–vaccine therapies. The evidence is insufficient to determine the effects of the technology on health outcomes.

References
Melanoma Vaccines

Policy # 00368
Original Effective Date: 06/25/2013
Current Effective Date: 03/20/2019
Archived Date: 06/20/2018
Returned to Active Status: 03/20/2019

Melanoma Vaccines

Policy # 00368
Original Effective Date: 06/25/2013
Current Effective Date: 03/20/2019
Archived Date: 06/20/2018
Returned to Active Status: 03/20/2019

Melanoma Vaccines

Policy # 00368
Original Effective Date: 06/25/2013
Current Effective Date: 03/20/2019
Archived Date: 06/20/2018
Returned to Active Status: 03/20/2019

Policy History
Original Effective Date: 06/25/2013
Current Effective Date: 03/20/2019
06/06/2013 Medical Policy Committee review
06/25/2013 Medical Policy Implementation Committee approval. New policy.
06/04/2015 Medical Policy Committee review
06/17/2015 Medical Policy Implementation Committee approval. No change to coverage.
08/03/2015 Coding update: ICD10 Diagnosis code section added; ICD9 Procedure code section removed.
06/02/2016 Medical Policy Committee review
06/20/2016 Medical Policy Implementation Committee approval. No change to coverage.
01/01/2017 Coding update: Removing ICD-9 Diagnosis Codes
06/01/2017 Medical Policy Committee review
06/21/2017 Medical Policy Implementation Committee approval. No change to coverage.
06/07/2018 Medical Policy Committee review. Recommend archiving policy.
06/20/2018 Medical Policy Implementation Committee approval. Archived
03/07/2019 Medical Policy Committee review.
03/20/2019 Medical Policy Implementation Committee approval. Brought back to active status.

Next Scheduled Review Date: 03/2020

Coding
The five character codes included in the Blue Cross Blue Shield of Louisiana Medical Policy Coverage Guidelines are obtained from current Current Procedural Terminology (CPT®), copyright 2018 by the American Medical Association (AMA). CPT is developed by the AMA as a listing of descriptive terms and five character identifying codes and modifiers for reporting medical services and procedures performed by physician.
Melanoma Vaccines

Policy # 00368
Original Effective Date: 06/25/2013
Current Effective Date: 03/20/2019
Archived Date: 06/20/2018
Returned to Active Status: 03/20/2019

The responsibility for the content of Blue Cross Blue Shield of Louisiana Medical Policy Coverage Guidelines is with Blue Cross and Blue Shield of Louisiana and no endorsement by the AMA is intended or should be implied. The AMA disclaims responsibility for any consequences or liability attributable or related to any use, nonuse or interpretation of information contained in Blue Cross Blue Shield of Louisiana Medical Policy Coverage Guidelines. Fee schedules, relative value units, conversion factors and/or related components are not assigned by the AMA, are not part of CPT, and the AMA is not recommending their use. The AMA does not directly or indirectly practice medicine or dispense medical services. The AMA assumes no liability for data contained or not contained herein. Any use of CPT outside of Blue Cross Blue Shield of Louisiana Medical Policy Coverage Guidelines should refer to the most current Procedural Terminology which contains the complete and most current listing of CPT codes and descriptive terms. Applicable FARS/DFARS apply.

CPT is a registered trademark of the American Medical Association.

Codes used to identify services associated with this policy may include (but may not be limited to) the following:

<table>
<thead>
<tr>
<th>Code Type</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPT</td>
<td>86849</td>
</tr>
<tr>
<td>HCPCS</td>
<td>No codes</td>
</tr>
<tr>
<td>ICD-10 Diagnosis</td>
<td>All related diagnoses</td>
</tr>
</tbody>
</table>

*Investigational – A medical treatment, procedure, drug, device, or biological product is Investigational if the effectiveness has not been clearly tested and it has not been incorporated into standard medical practice. Any determination we make that a medical treatment, procedure, drug, device, or biological product is Investigational will be based on a consideration of the following:

A. Whether the medical treatment, procedure, drug, device, or biological product can be lawfully marketed without approval of the U.S. Food and Drug Administration (FDA) and whether such approval has been granted at the time the medical treatment, procedure, drug, device, or biological product is sought to be furnished; or
Melanoma Vaccines

Policy # 00368
Original Effective Date: 06/25/2013
Current Effective Date: 03/20/2019
Archived Date: 06/20/2018
Returned to Active Status: 03/20/2019

B. Whether the medical treatment, procedure, drug, device, or biological product requires further studies or clinical trials to determine its maximum tolerated dose, toxicity, safety, effectiveness, or effectiveness as compared with the standard means of treatment or diagnosis, must improve health outcomes, according to the consensus of opinion among experts as shown by reliable evidence, including:
 1. Consultation with the Blue Cross and Blue Shield Association technology assessment program (TEC) or other nonaffiliated technology evaluation center(s);
 2. Credible scientific evidence published in peer-reviewed medical literature generally recognized by the relevant medical community; or
 3. Reference to federal regulations.

‡ Indicated trademarks are the registered trademarks of their respective owners.

NOTICE: Medical Policies are scientific based opinions, provided solely for coverage and informational purposes. Medical Policies should not be construed to suggest that the Company recommends, advocates, requires, encourages, or discourages any particular treatment, procedure, or service, or any particular course of treatment, procedure, or service.