Hematopoietic Cell Transplantation for Solid Tumors of Childhood

Policy # 00064
Original Effective Date: 01/28/2002
Current Effective Date: 08/10/2020

Applies to all products administered or underwritten by Blue Cross and Blue Shield of Louisiana and its subsidiary, HMO Louisiana, Inc. (collectively referred to as the “Company”), unless otherwise provided in the applicable contract. Medical technology is constantly evolving, and we reserve the right to review and update Medical Policy periodically.

Note: Hematopoietic Cell Transplantation for Central Nervous System Embryonal Tumors and Ependymoma is addressed separately in medical policy 00063.

When Services Are Eligible for Coverage
Coverage for eligible medical treatments or procedures, drugs, devices or biological products may be provided only if:

- Benefits are available in the member’s contract/certificate, and
- Medical necessity criteria and guidelines are met.

Based on review of available data, the Company may consider autologous hematopoietic cell transplantation (HCT) for the following conditions to be eligible for coverage:**

- Initial treatment of high-risk neuroblastoma,
- Recurrent or refractory neuroblastoma,
- Initial treatment of high-risk Ewing’s sarcoma, and
- Recurrent or refractory Ewing's sarcoma.
- Metastatic retinoblastoma.

Based on review of available data, the Company may consider tandem autologous hematopoietic cell transplantation (HCT) for high-risk neuroblastoma to be eligible for coverage.**

When Services Are Considered Investigational
Coverage is not available for investigational medical treatments or procedures, drugs, devices or biological products.

Based on review of available data, the Company considers autologous hematopoietic cell transplantation (HCT) as initial treatment of low- or intermediate-risk neuroblastoma, initial

©2020 Blue Cross and Blue Shield of Louisiana

Blue Cross and Blue Shield of Louisiana is an independent licensee of the Blue Cross and Blue Shield Association and incorporated as Louisiana Health Service & Indemnity Company.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without permission from Blue Cross and Blue Shield of Louisiana.

Page 1 of 28
Hematopoietic Cell Transplantation for Solid Tumors of Childhood

Policy # 00064
Original Effective Date: 01/28/2002
Current Effective Date: 08/10/2020

treatment of low- or intermediate-risk Ewing’s sarcoma, and for other solid tumors of childhood including, but not limited, to the following to be investigational.*

- Rhabdomyosarcoma (RMS)
- Wilm’s tumor
- Osteosarcoma
- Retinoblastoma without metastasis.

Based on review of available data, the Company considers tandem autologous hematopoietic cell transplantation (HCT) for the treatment of all other types of pediatric solid tumors except high-risk neuroblastoma, as noted above to be investigational.*

Based on review of available data, the Company considers allogeneic (myeloablative or nonmyeloablative) hematopoietic cell transplantation (HCT) for treatment of pediatric solid tumors to be investigational.*

Based on review of available data, the Company considers salvage allogeneic hematopoietic cell transplantation (HCT) for pediatric solid tumors that relapse after autologous transplant or fail to respond to be investigational.*

Policy Guidelines
This policy addresses peripheral neuroblastoma arising from the peripheral nervous system (ie, neuroblastoma, ganglioneuroblastoma, ganglioneuroma).

Hematopoietic cell transplantation refers to any source of stem cells, ie, autologous, allogeneic, syngeneic, or umbilical cord blood.

Relapse is defined as tumor recurrence after a prior complete response.

Primary refractory disease is defined as a tumor that does not achieve a complete remission after initial standard-dose chemotherapy.

Background/Overview
Solid Tumors of Childhood

©2020 Blue Cross and Blue Shield of Louisiana

Blue Cross and Blue Shield of Louisiana is an independent licensee of the Blue Cross and Blue Shield Association and incorporated as Louisiana Health Service & Indemnity Company.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without permission from Blue Cross and Blue Shield of Louisiana.
Solid tumors of childhood arise from mesodermal, ectodermal, and endodermal cells of origin. Some common solid tumors of childhood are neuroblastoma, Ewing sarcoma/Ewing sarcoma family of tumors (ESFT), Wilms tumor, rhabdomyosarcoma, osteosarcoma, and retinoblastoma.

General Treatment

The prognosis for pediatric solid tumors has improved more recently, mostly due to the application of multiagent chemotherapy and improvements in local control therapy (including aggressive surgery and advancements in radiotherapy). However, patients with metastatic, refractory, or recurrent disease continue to have poor prognoses, and these “high-risk” patients are candidates for more aggressive therapy, including autologous hematopoietic cell transplantation (HCT), to improve event-free survival and overall survival.

Descriptions of pediatric-onset solid tumors addressed herein are as follows.

Peripheral Neuroblastoma

Neuroblastoma is the most common extracranial solid tumor of childhood, with approximately 90% of cases presenting in children younger than 5 years of age. These tumors originate where sympathetic nervous system tissue is present, within the adrenal medulla or paraspinal sympathetic ganglia, but have diverse clinical behavior depending on a variety of risk factors.

Patients with neuroblastoma are stratified into prognostic risk groups (low, intermediate, high) that determine treatment plans. Risk variables include age at diagnosis, clinical stage of disease, tumor histology, and certain molecular characteristics, including the presence of the *MYCN* oncogene. Tumor histology is categorized as favorable or unfavorable, according to the degree of tumor differentiation, the proportion of tumor stromal component, and index of cellular proliferation. It is well-established that *MYCN* amplification is associated with rapid tumor progression and a poor prognosis, even in the setting of other coexisting favorable factors. Loss of heterozygosity (LOH) at chromosome arms 1p and 11q frequently occurs in neuroblastoma. Although 1p LOH is associated with *MYCN* amplification, 11q is usually found in tumors without this abnormality. Some recent studies have shown that 1p LOH and unbalanced 11q LOH are strongly associated with outcome in patients with neuroblastoma, and both are independently predictive of worse progression-free survival in patients with low- and intermediate-risk disease. Although the use of these LOH markers in assigning treatment in patients is evolving, they may prove useful to stratify treatment.
In the early 1990s, a uniform clinical staging system based on surgical resectability and distant spread, the International Neuroblastoma Staging System, was adopted by pediatric cooperative groups (see Table 1).

Table 1. International Neuroblastoma Staging System

<table>
<thead>
<tr>
<th>Stage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Localized tumor with complete gross excision, with or without microscopic residual disease; lymph nodes negative for tumor</td>
</tr>
<tr>
<td>2A</td>
<td>Localized tumor with incomplete gross excision; lymph nodes negative for tumor</td>
</tr>
<tr>
<td>2B</td>
<td>Localized tumor with or without complete gross excision, with ipsilateral lymph nodes positive for tumor</td>
</tr>
<tr>
<td>3</td>
<td>Unresectable unilateral tumor infiltrating across the midline, with or without regional lymph node involvement; or localized unilateral tumor with contralateral regional lymph node involvement; or midline tumor with bilateral extension by infiltration or by lymph node involvement</td>
</tr>
<tr>
<td>4</td>
<td>Any primary tumor with dissemination to distant lymph nodes, bone, bone marrow, liver, skin, and/or other organs, except as defined for stage 4S</td>
</tr>
<tr>
<td>4S</td>
<td>Localized primary tumor as defined for stage 1, 2A, or 2B, with dissemination limited to skin, liver, and/or bone marrow (marrow involvement less than 10%), limited to children younger than 1 year of age</td>
</tr>
</tbody>
</table>

The low-risk group includes patients younger than one year of age with stage 1, 2, or 4S with favorable histopathologic findings and no MYCN oncogene amplification. High-risk neuroblastoma is characterized by age older than one year, disseminated disease, MYCN oncogene amplification, and unfavorable histopathologic findings.

The International Neuroblastoma Risk Group (2009) proposed a revised staging system, which incorporated pretreatment imaging parameters instead of surgical findings (see Table 2).
Hematopoietic Cell Transplantation for Solid Tumors of Childhood

Policy # 00064
Original Effective Date: 01/28/2002
Current Effective Date: 08/10/2020

Table 2. International Neuroblastoma Risk Group Staging System

<table>
<thead>
<tr>
<th>Stage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>Localized tumor not involving vital structures as defined by the list of Image-Defined Risk Factors and confined to one body compartment</td>
</tr>
<tr>
<td>L2</td>
<td>Locoregional tumor with presence of one or more Image-Defined Risk Factors</td>
</tr>
<tr>
<td>M</td>
<td>Distant metastatic disease (except stage MS)</td>
</tr>
<tr>
<td>MS</td>
<td>Metastatic disease in children younger than 18 months with metastases confined to skin, liver, and/or bone marrow</td>
</tr>
</tbody>
</table>

Treatment

In general, most patients with the low-stage disease have excellent outcomes with minimal therapy; and with International Neuroblastoma Staging System stage-1 disease, most patients can be treated by surgery alone. Most infants, even with disseminated disease, have favorable outcomes with chemotherapy and surgery.

For intermediate-risk disease, moderately intensive multiagent chemotherapy is the mainstay of therapy. Surgery is needed to obtain a diagnosis, and the extent of resection necessary to obtain an optimal outcome is not established. Patients at high-risk have historically had very low (<15%) long-term overall survival. Current therapy for high-risk disease typically includes an aggressive multimodal approach with chemotherapy, surgical resection, and radiotherapy.

Treatment of recurrent disease is determined by the risk group at diagnosis and the extent of disease and age of the patient at recurrence.

Ewing Sarcoma Family of Tumors

ESFT encompasses a group of tumors that share some degree of neuroglial differentiation and a characteristic underlying molecular pathogenesis (chromosomal translocation). The translocation usually involves chromosome 22 and results in fusion of the EWS gene with one of the members of the ETS (E26 transformation-specific) family of transcription factors, either FLI1 (90%-95%) or ERG (5%-10%). These fusion products function as oncogenic aberrant transcription factors. Detection of these fusions is considered to be specific for the ESFT and helps further validate
Hematopoietic Cell Transplantation for Solid Tumors of Childhood

Policy # 00064
Original Effective Date: 01/28/2002
Current Effective Date: 08/10/2020

diagnosis. Included in ESFT are “classic” Ewing sarcoma of bone, extra osseous Ewing, peripheral primitive neuroectodermal tumor, and Askin tumors (chest wall).

Most commonly diagnosed in adolescence, ESFT can be found in bone (most commonly) or soft tissue; however, the spectrum of ESFT has also been described in various organ systems. Ewing is the second most common primary malignant bone tumor. The most common primary sites are the pelvic bones, the long bones of the lower extremities, and the bones of the chest wall.

Treatment

Current therapy for Ewing sarcoma typically includes induction chemotherapy, followed by local control with surgery and/or radiotherapy (dependent on tumor size and location), followed by adjuvant chemotherapy. Multiagent chemotherapy, surgery, and radiotherapy have improved progression-free survival rates in patients with the localized disease to 60% to 70%. The presence of metastatic disease is the most unfavorable prognostic feature, and the outcome for patients presenting with metastatic disease is poor, with 20% to 30% progression-free survival. Other adverse prognostic factors that may categorize a patient as having “high-risk” Ewing are tumor location (eg, patients with pelvic primaries have worse outcomes), larger tumor size, and older age of the patient. However, “high-risk” Ewing has not always been consistently defined in the literature.

Rhabdomyosarcoma

Rhabdomyosarcoma, the most common soft tissue sarcoma of childhood, shows skeletal muscle differentiation. The most common primary sites are the head and neck (eg, parameningeal, orbital, pharyngeal), genitourinary tract, and extremities.

Treatment

Specific treatment is based on tumor location, resection, and node status, and may involve surgery, radiotherapy, and chemotherapy. Five-year survival rates for rhabdomyosarcoma increased between 1975 and 2010 from 53% to 67% in children younger than 15 years and from 30% to 51% in 15- to 19-year-olds.

Approximately 15% of children present with metastatic disease, and despite the introduction of new drugs and intensified treatment, the 5-year survival is 20% to 30% for this “high-risk” group. Similarly, post relapse mortality is very high. The prognosis of the metastatic disease is affected by tumor histology, age at diagnosis, the site of metastatic disease, and the number of metastatic sites.
Wilms Tumor
Wilms tumor is the most common primary malignant renal tumor of childhood. In the United States, Wilms tumor is staged using the National Wilms Tumor Study system, which is based on surgical evaluation before chemotherapy (see Table 3).

Table 3. National Wilms Tumor Study Staging

<table>
<thead>
<tr>
<th>Stage</th>
<th>Description</th>
</tr>
</thead>
</table>
| I | (a) Tumor is limited to the kidney and completely excised;
(b) The tumor was not ruptured before or during removal;
(c) The vessels of the renal sinus are not involved beyond 2 mm
(d) There is no residual tumor apparent beyond the margins of excision |
| II | (a) Tumor extends beyond the kidney but is completely excised
(b) No residual tumor is apparent at or beyond the margins of excision
(c) Tumor thrombus in vessels outside the kidney is stage II if the thrombus is removed en bloc with the tumor |
| III | Residual tumor confined to the abdomen:
(a) Lymph nodes in the renal hilum, the periaortic chains, or beyond are found to contain tumor
(b) Diffuse peritoneal contamination by the tumor
(c) Implants are found on the peritoneal surfaces
(d) Tumor extends beyond the surgical margins either microscopically or grossly
(e) Tumor is not completely resectable because of local infiltration into vital structures |
Hematopoietic Cell Transplantation for Solid Tumors of Childhood

Policy # 00064
Original Effective Date: 01/28/2002
Current Effective Date: 08/10/2020

<table>
<thead>
<tr>
<th>Stage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IV</td>
<td>Presence of hematogenous metastases or metastases to distant lymph nodes</td>
</tr>
<tr>
<td>V</td>
<td>Bilateral renal involvement at the time of initial diagnosis</td>
</tr>
</tbody>
</table>

Adapted from Metzger and Dome (2005).

Treatment

In the United States, National Wilms Tumor Study and Children’s Oncology Group protocols are based on primary resection for unilateral tumors, followed by escalating levels of chemotherapy and radiotherapy depending on tumor stage and other prognostic factors. Tumor histology, tumor stage, molecular and genetic markers (eg, LOH at chromosome 16q), and age (>2 years) are all associated with increased risks of recurrence and death. Wilms tumors are highly sensitive to chemotherapy and radiotherapy, and current cure rates exceed 85%. Between 10% and 15% of patients with favorable histology and 50% of patients with anaplastic tumors, experience tumor progression or relapse.

Similar risk-adapted strategies are being tested for the 15% of patients who experience a relapse. Success rates after relapse range from 25% to 45%. For patients with adverse prognostic factors (histologically anaplastic tumors, relapse <6 to 12 months after nephrectomy, second or subsequent relapse, relapse within the radiation field, bone or brain metastases), the event-free survival rate is less than 15%.

Osteosarcoma

Osteosarcoma is a primary malignant bone tumor and the most common bone cancer in children and adolescents; it is characterized by infiltration of bone or osteoid by the tumor cells. Peak incidence occurs around puberty, most commonly in long bones such as the femur or humerus. Osteosarcomas are characterized by variants in the TP53 tumor suppressor gene.

The prognosis of osteosarcoma has greatly improved, with 5-year survival rates increasing between 1975 and 2010 from 40% to 76% in children younger than 15 years and from 56% to 66% in 15- to 19-year-olds. Prognostic factors for patients with localized disease include site and size of the primary tumor, the presence of metastases at the time of diagnosis, resection adequacy, and tumor response to neoadjuvant chemotherapy.
Hematopoietic Cell Transplantation for Solid Tumors of Childhood

Policy # 00064
Original Effective Date: 01/28/2002
Current Effective Date: 08/10/2020

Treatment
For patients with recurrent osteosarcoma, the most important prognostic factor is surgical resectability. There is a 5-year survival rate of 20% to 45% in patients who had a complete resection of metastatic pulmonary tumors and a 20% survival rate for patients with metastatic tumors at other sites.

Retinoblastoma
Retinoblastoma is the most common primary tumor of the eye in children. It may occur as a heritable (25%-30%) or nonheritable (70%-75%) tumor. Cases may be unilateral or bilateral, with bilateral tumors almost always being the heritable type.

Treatment
Treatment options depend on the extent of disease. Retinoblastoma is usually confined to the eye, and with current therapy has a high cure rate. However, once disease spreads beyond the eye, survival rates drop significantly; five-year disease-free survival is reported to be less than 10% in those with the extraocular disease, and stage 4B disease (ie, disease metastatic to the central nervous system) has been lethal in virtually all cases reported.

The strategy for nonmetastatic disease depends on the disease extent but may include focal therapies (eg, laser photocoagulation, cryotherapy, plaque radiotherapy), intravitreal chemotherapy, intraarterial chemotherapy, systemic chemotherapy, enucleation, or a combination. For metastatic disease, intensive multimodal therapy with high-dose chemotherapy, with or without radiotherapy, is standard care.

Hematopoietic Cell Transplantation
HCT is a procedure in which hematopoietic stem cells are infused to restore bone marrow function in cancer patients who receive bone-marrow-toxic doses of drugs, with or without whole body radiotherapy. Hematopoietic stem cells may be obtained from the transplant recipient (autologous HCT) or a donor (allogeneic HCT). They can be harvested from bone marrow, peripheral blood, or umbilical cord blood shortly after delivery of neonates. Although cord blood is an allogeneic source, the stem cells in it are antigenically “naive” and thus are associated with a lower incidence of rejection or graft-versus-host disease.
Immunologic compatibility between infused hematopoietic stem cells and the recipient is not an issue in autologous HCT. However, immunologic compatibility between donor and patient is critical for achieving a good outcome of allogeneic HCT. Compatibility is established by typing of human leukocyte antigens using cellular, serologic, or molecular techniques. Human leukocyte antigens refer to the tissue type expressed at class I and class II loci on chromosome 6. Depending on the disease being treated, an acceptable donor (except umbilical cord blood) will match the patient at all or most human leukocyte antigens loci.

FDA or Other Governmental Regulatory Approval

U.S. Food and Drug Administration (FDA)

The U.S. FDA regulates human cells and tissues intended for implantation, transplantation, or infusion through the Center for Biologics Evaluation and Research, under Code of Federal Regulation, title 21, parts 1270 and 1271. Hematopoietic stem cells are included in these regulations.

Rationale/Source

Hematopoietic cell transplantation (HCT) is a procedure in which hematopoietic stem cells are infused to restore bone marrow function in cancer patients who receive bone-marrow-toxic doses of drugs, with or without whole body radiotherapy. Stem cells may be obtained from the transplant recipient (autologous HCT) or harvested from a donor (allogeneic HCT). Stem cells may be harvested from bone marrow, peripheral blood, or umbilical cord blood shortly after delivery of neonates.

For individuals who have high-risk or relapsed peripheral neuroblastoma who receive single or tandem autologous HCT, the evidence includes randomized controlled trials, systematic reviews of those trials, and observational studies. The relevant outcomes are overall survival (OS), disease-specific survival (DSS), and treatment-related mortality (TRM) and morbidity. In the pooled analysis, patients with high-risk neuroblastoma treated with first-line therapy with single autologous HCT with myeloablative conditioning had significantly improved event-free survival (EFS) compared with standard therapy. Similarly, well-designed randomized trials comparing tandem autologous HCT with conventional therapy showed improvements in EFS for children with high-risk neuroblastoma. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.
Hematopoietic Cell Transplantation for Solid Tumors of Childhood

Policy # 00064
Original Effective Date: 01/28/2002
Current Effective Date: 08/10/2020

For individuals who have high-risk Ewing sarcoma who receive single or tandem autologous HCT, the evidence includes single-arm studies. The relevant outcomes are OS, DSS, and TRM and morbidity. Although early nonrandomized studies were promising, more recent prospective nonrandomized study results have been inconsistent regarding whether HCT extends survival compared with typical conventional therapy. Additional studies, including a randomized trial, are ongoing, comparing HCT with conventional therapy. The evidence is insufficient to determine the effects of the technology on health outcomes.

Clinical input obtained in 2011 supported the use of single autologous HCT for high-risk Ewing sarcoma, and it is supported by national guidelines from the American Society for Blood and Marrow Transplantation. Also, the use of single autologous HCT is supported by national guidelines for recurrent or refractory Ewing sarcoma. Therefore, autologous HCT may be considered medically necessary for these indications.

For individuals who have rhabdomyosarcoma who receive single autologous HCT, the evidence includes nonrandomized comparative studies and case series. The relevant outcomes are OS, DSF, and TRM and morbidity. Available studies have not demonstrated improvements in OS or EFS with autologous HCT. Additional research is needed to demonstrate a benefit with autologous HCT for pediatric rhabdomyosarcoma. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals who have Wilms tumor who receive single autologous HCT, the evidence includes a retrospective analysis, meta-analysis of case series, and case reports. The relevant outcomes are OS, DSS, and TRM and morbidity. Overall four-year survival rates were similar between patients receiving HCT and receiving chemotherapy. There was a trend suggesting that patients with lung-only stage 3 or 4 relapse might benefit from autologous HCT. However, the overall body of evidence is limited. The evidence is insufficient to determine the effects of the technology on health outcomes.

Clinical input obtained in 2017 does not support whether the following indication provides a clinically meaningful improvement in the net health outcome or is consistent with generally accepted medical practice:

- Use of autologous HCT for children with advanced-stage Wilms tumor.
Hematopoietic Cell Transplantation for Solid Tumors of Childhood

Policy # 00064
Original Effective Date: 01/28/2002
Current Effective Date: 08/10/2020

Thus, the above indication may be considered investigational.

For individuals who have osteosarcoma who receive single autologous HCT, the evidence includes case reports, case series, and a prospective single-arm study. The relevant outcomes are OS, DSF, and TRM and morbidity. An interim analysis of the prospective single-arm study showed that patients receiving autologous HCT were experiencing lower EFS rates than historical controls, resulting in all patients being enrolled in the standard of care chemotherapy. The evidence is insufficient to determine the effects of the technology on health outcomes.

Clinical input obtained in 2017 does not support whether the following indication provides a clinically meaningful improvement in the net health outcome or is consistent with generally accepted medical practice:
· Use of autologous HCT for children with osteosarcoma.

Thus, the above indication(s) may be considered investigational.

For individuals who have localized retinoblastoma who receive single autologous HCT, the evidence includes no studies. The relevant outcomes are OS, DSS, and TRM and morbidity. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals who have metastatic retinoblastoma who receive single autologous HCT, the evidence includes small case series and case reports and a systematic review and meta-analysis. The relevant outcomes are OS, DSS, and TRM and morbidity. Results from the limited data have suggested that autologous HCT may prolong disease-free survival, particularly in patients without central nervous system involvement (stage 4A). Given the poor prognosis for this indication with conventional therapies, the incremental improvement with autologous HCT might be considered a significant benefit. However, the overall body of evidence is limited. The evidence is insufficient to determine the effects of the technology on health outcomes.

Clinical input obtained in 2017 supports that the following indication provides a clinically meaningful improvement in net health outcome and is consistent with generally accepted medical practice:
· Use of autologous HCT for children with metastatic retinoblastoma.
Supplemental Information
Clinical Input From Physician Specialty Societies and Academic Medical Centers

While the various physician specialty societies and academic medical centers may collaborate with and make recommendations during this process, through the provision of appropriate reviewers, input received does not represent an endorsement or position statement by the physician specialty societies or academic medical centers, unless otherwise noted.

2017 Input
In response to requests, clinical input on autologous hematopoietic cell transplantation (HCT) for children with metastatic retinoblastoma, advanced-stage Wilms tumor, and osteosarcoma was received from 2 respondents, including 2 physicians from academic centers, while this policy was under review in 2017.

Based on the evidence and independent clinical input, the clinical input supports that the following indications provide a clinically meaningful improvement in the net health outcome and are consistent with generally accepted medical practice:

- Use of autologous HCT for children with metastatic retinoblastoma.

Based on the evidence and independent clinical input, the clinical input does not support whether the following indications provide a clinically meaningful improvement in the net health outcome or are consistent with generally accepted medical practice:

- Use of autologous HCT for children with advanced-stage Wilms tumor.
- Use of autologous HCT for children with osteosarcoma.

2011 Input
In response to requests, input was received from 3 academic medical centers and 2 Blue Distinction Centers for Transplants for review in 2011. There was general agreement among reviewers for most of the policy statements with the following exceptions. One reviewer considered autologous HCT medically necessary for advanced-stage retinoblastoma. One reviewer did not consider autologous
Hematopoietic Cell Transplantation for Solid Tumors of Childhood

Policy # 00064
Original Effective Date: 01/28/2002
Current Effective Date: 08/10/2020

HCT for low- to intermediate-risk Ewing sarcoma investigational but did state that the results of the Euro-EWING’s phase 3 trial were awaited. Two reviewers agreed with the policy statement that tandem autologous HCT for pediatric solid tumors is investigational, two considered it medically necessary for high-risk neuroblastoma, and a fifth reviewer while agreeing that tandem autologous HCT is considered investigational for pediatric solid tumors also stated that it is considered standard for high-risk neuroblastoma at some centers.

Practice Guidelines and Position Statements

American Society for Blood and Marrow Transplantation
The American Society for Blood and Marrow Transplantation (2015) published consensus guidelines for clinically appropriate indications for HCT based on best prevailing evidence. Indications for HCT in pediatric patients with the solid tumors types addressed in this review are outlined in Table 4.

Table 4. Indications for HCT in Pediatric Patients with Solid Tumors

<table>
<thead>
<tr>
<th>Indication and Disease Status</th>
<th>Allogeneic HCTa</th>
<th>Autologous HCTa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ewing sarcoma, high risk or relapse</td>
<td>D</td>
<td>S</td>
</tr>
<tr>
<td>Soft tissue sarcoma, high risk or relapse</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>Neuroblastoma, high risk or relapse</td>
<td>D</td>
<td>S</td>
</tr>
<tr>
<td>Wilms tumor, relapse</td>
<td>N</td>
<td>C</td>
</tr>
<tr>
<td>Osteosarcoma, high risk</td>
<td>N</td>
<td>C</td>
</tr>
</tbody>
</table>

Adapted from Majhail et al (2015).

HCT: hematopoietic cell transplantation.
a“Standard of care (S): This category includes indications that are well defined and are generally supported by evidence in the form of high quality clinical trials and/or observational studies (eg, through CIBMTR or EBMT).” “Standard of care, clinical evidence available (C): This category includes indications for which large clinical trials and observational studies are not available. However, HCT has been shown to be an effective therapy with acceptable risk of morbidity and mortality in sufficiently large single- or multi-center cohort studies. HCT can be considered as a
Hematopoietic Cell Transplantation for Solid Tumors of Childhood

Policy # 00064
Original Effective Date: 01/28/2002
Current Effective Date: 08/10/2020

treatment option for individual patients after careful evaluation of risks and benefits. As more evidence becomes available, some indications may be reclassified as ‘Standard of Care’.

“Developmental; (D): Developmental indications include diseases where pre-clinical and/or early phase clinical studies show HCT to be a promising treatment option. HCT is best pursued for these indications as part of a clinical trial. As more evidence becomes available, some indications may be reclassified as ‘Standard of Care, Clinical Evidence Available’ or ‘Standard of Care’.”

“Not generally recommended (N): Transplantation is not currently recommended for these indications where evidence and clinical practice do not support the routine use of HCT. The effectiveness of non-transplant therapies for an earlier phase of a disease does not justify the risks of HCT. Alternatively, a meaningful benefit is not expected from the procedure in patients with an advanced phase of a disease. However, this recommendation does not preclude investigation of HCT as a potential treatment and transplantation may be pursued for these indications within the context of a clinical trial.”

National Comprehensive Cancer Network
Current National Comprehensive Cancer Network guidelines or comments on HCT related to the cancers addressed in this review are summarized in Table 5. Other tumor types are not addressed in Network guidelines.

Table 5. NCCN Guidelines

<table>
<thead>
<tr>
<th>Guideline</th>
<th>Tumor Type</th>
<th>Year</th>
<th>NCCN Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bone cancer</td>
<td>Osteosarcoma</td>
<td>v.1.2018</td>
<td>HCT not addressed</td>
</tr>
<tr>
<td>Bone cancer</td>
<td>Ewing sarcoma</td>
<td>v.1.2018</td>
<td>“High dose chemotherapy followed by stem cell transplant (HDT/SCT) has been evaluated in patients with localized as well as metastatic disease. HDT/SCT has been associated with potential survival benefit in patients with non-metastatic disease. However, studies that have evaluated HDT/SCT in patients with primary metastatic disease have shown conflicting results…. HDT/SCT has been...”</td>
</tr>
</tbody>
</table>
associated with improved long-term survival in patients with relapsed or progressive Ewing sarcoma in small, single-institution studies. The role of this approach is yet to be determined in prospective randomized studies.”

| Soft tissue sarcoma | Rhabdomyosarcoma | v.1.2018 | HCT not addressed |

HCT: hematopoietic cell transplantation; NCCN: National Comprehensive Cancer Network.

U.S. Preventive Services Task Force Recommendations
Not applicable.

Medicare National Coverage
There is no national coverage determination. In the absence of a national coverage determination, coverage decisions are left to the discretion of local Medicare carriers.

Ongoing and Unpublished Clinical Trials
Some currently unpublished trials that might influence this policy are listed in Table 6.

Table 6. Summary of Key Trials

<table>
<thead>
<tr>
<th>NCT No.</th>
<th>Trial Name</th>
<th>Planned Enrollment</th>
<th>Completion Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ongoing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Combined solid tumor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCT00638898</td>
<td>Pilot Study of High-Dose Chemotherapy With Busulfan, Melphalan, and Topotecan Followed by Autologous Hematopoietic Stem Cell Transplant in Advanced Stage and Recurrent Tumors</td>
<td>25</td>
<td>Jun 2019*</td>
</tr>
</tbody>
</table>

Peripheral neuroblastoma
Hematopoietic Cell Transplantation for Solid Tumors of Childhood

Policy # 00064
Original Effective Date: 01/28/2002
Current Effective Date: 08/10/2020

<table>
<thead>
<tr>
<th>Study Identifier</th>
<th>Study Description</th>
<th>Sample Size</th>
<th>Start Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCT01704716</td>
<td>High Risk Neuroblastoma Study 1 of SIOP-Europe (SIOPEN)</td>
<td>3300</td>
<td>Sep 2024 (ongoing)</td>
</tr>
<tr>
<td></td>
<td>Ewing sarcoma</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCT00987636</td>
<td>Phase 3, Open Label, Multi-centre, Randomized Controlled International Study in Ewing Sarcoma</td>
<td>1163</td>
<td>Mar 2019**</td>
</tr>
<tr>
<td></td>
<td>Retinoblastoma</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCT00554788</td>
<td>A Trial of Intensive Multi-Modality Therapy for Extra-Ocular Retinoblastoma</td>
<td>60</td>
<td>Jun 2018***</td>
</tr>
</tbody>
</table>

NCT: national clinical trial.

* = Active, not recruiting; no results posted. ** = Completed, no results posted. *** = Results posted on www.clinicaltrials.gov website, not yet published.

References

©2020 Blue Cross and Blue Shield of Louisiana

Blue Cross and Blue Shield of Louisiana is an independent licensee of the Blue Cross and Blue Shield Association and incorporated as Louisiana Health Service & Indemnity Company.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without permission from Blue Cross and Blue Shield of Louisiana.

29. Matthay KK, Reynolds CP, Seeger RC, et al. Long-term results for children with high-risk neuroblastoma treated on a randomized trial of myeloablative therapy followed by 13-cis-
Hematopoietic Cell Transplantation for Solid Tumors of Childhood

Policy # 00064
Original Effective Date: 01/28/2002
Current Effective Date: 08/10/2020

Hematopoietic Cell Transplantation for Solid Tumors of Childhood

Policy # 00064
Original Effective Date: 01/28/2002
Current Effective Date: 08/10/2020

Policy History
Original Effective Date: 01/28/2002
Current Effective Date: 08/10/2020

12/06/2001 Medical Policy Committee review
01/28/2002 Managed Care Advisory Council approval
05/07/2004 Medical Director review
05/18/2004 Medical Policy Committee review. Format revision. High-Dose Chemotherapy and Hematopoietic Stem Cell Support for Pediatric Solid Tumors policy separated from current HDC with Hematopoietic Stem Cell Support policy. No substance change to policy.
06/28/2004 Managed Care Advisory Council approval
05/03/2005 Medical Director review. Format revision. No substance change to policy.
05/17/2005 Medical Policy Committee review. Policy statement language changed from, “may consider HDC and autologous or syngeneic SCS to treat recurrent or refractory Ewing’s sarcoma to be eligible for coverage” to; “Based on review of available data, the Company may consider HDC and autologous or syngeneic SCS to consolidate remissions of poor-risk Ewing’s sarcoma, or as salvage therapy for those with residual, recurrent or refractory disease to be eligible for coverage.” Patient selection criteria added.
05/23/2005 Managed Care Advisory Council approval

©2020 Blue Cross and Blue Shield of Louisiana

Blue Cross and Blue Shield of Louisiana is an independent licensee of the Blue Cross and Blue Shield Association and incorporated as Louisiana Health Service & Indemnity Company.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without permission from Blue Cross and Blue Shield of Louisiana.

Page 23 of 28
Hematopoietic Cell Transplantation for Solid Tumors of Childhood

Policy # 00064
Original Effective Date: 01/28/2002
Current Effective Date: 08/10/2020

08/02/2006 Medical Director review
06/13/2007 Medical Director review
06/20/2007 Medical Policy Committee approval. Policy updated with literature review. Policy statement added to indicate that multiple cycle high-dose chemotherapy and hematopoietic stem-cell support is considered to be investigational for the treatment of neuroblastoma.
07/02/2008 Medical Director review
07/16/2008 Medical Policy Committee approval
06/04/2009 Medical Director review
06/17/2009 Medical Policy Committee approval. Changed title from “High-Dose Chemotherapy with Stem Cell Support for Solid Tumors of Childhood” to “High-Dose Chemotherapy with Hematopoietic Stem Cell Support for Solid Tumors of Childhood”. Changed “poor-risk Ewing’s sarcoma” to “high-risk Ewing’s sarcoma” in the “When Services May Be Eligible for Coverage” section and under the “Patient Selection Criteria.” Extensive changes made to “Background/Overview, FDA, Rationale and References” sections of the policy. No change to coverage eligibility.
06/03/2010 Medical Policy Committee review
06/16/2010 Medical Policy Implementation Committee approval. Changed title from “High-Dose Chemotherapy with Hematopoietic Stem Cell Support for Support for Solid Tumors of Childhood” to “Hematopoietic Stem Cell Transplantation for Solid Tumors of Childhood”. Changed all “high-dose chemotherapy with stem cell support” verbiage to “hematopoietic stem cell transplantation” throughout the coverage section of the policy. Coverage eligibility unchanged.
06/02/2011 Medical Policy Committee review
06/15/2011 Medical Policy Implementation Committee approval. Investigational statement modified to specify that “tandem autologous-autologous hematopoietic stem cell transplantation for treatment of pediatric solid tumors” is investigational. Added that allogeneic (myeloblastic or nonmyeloblastic) hematopoietic stem cell transplantation for treatment of pediatric solid tumors is investigational.
06/14/2012 Medical Policy Committee review
Hematopoietic Cell Transplantation for Solid Tumors of Childhood

Policy # 00064
Original Effective Date: 01/28/2002
Current Effective Date: 08/10/2020

06/20/2012 Medical Policy Implementation Committee approval. Policy updated and reformatted.
03/04/2013 Coding updated
06/06/2013 Medical Policy Committee review
06/25/2013 Medical Policy Implementation Committee approval. The coverage statements were modified to state specifically that tandem autologous HSCT for high-risk neuroblastoma is considered to be eligible for coverage, but is investigational for all other indications.
06/05/2014 Medical Policy Committee review
06/18/2014 Medical Policy Implementation Committee approval. No change to coverage.
08/03/2015 Coding update: ICD10 Diagnosis code section added; ICD9 Procedure code section removed.
09/03/2015 Medical Policy Committee review
09/23/2015 Medical Policy Implementation Committee approval. No change to coverage.
09/08/2016 Medical Policy Committee review
09/21/2016 Medical Policy Implementation Committee approval. No change to coverage.
01/01/2017 Coding update: Removing ICD-9 Diagnosis Codes
07/06/2017 Medical Policy Committee review
07/19/2017 Medical Policy Implementation Committee approval. Changed “hematopoietic stem cell transplantation” to “hematopoietic cell transplantation” per NCCN terminology change. Based on clinical input, “metastatic retinoblastoma” added to first medically necessary statement. In first investigational statement, “retinoblastoma” changed to “retinoblastoma without metastases.”
07/05/2018 Medical Policy Committee review
07/11/2018 Medical Policy Implementation Committee approval. No change to coverage.
07/03/2019 Medical Policy Committee review
07/18/2019 Medical Policy Implementation Committee approval. Coverage eligibility unchanged.
07/02/2020 Medical Policy Committee review
07/08/2020 Medical Policy Implementation Committee approval. Coverage eligibility unchanged.

Next Scheduled Review Date: 07/2021
Hematopoietic Cell Transplantation for Solid Tumors of Childhood

Policy # 00064
Original Effective Date: 01/28/2002
Current Effective Date: 08/10/2020

Coding
The five character codes included in the Blue Cross Blue Shield of Louisiana Medical Policy Coverage Guidelines are obtained from Current Procedural Terminology (CPT®), copyright 2019 by the American Medical Association (AMA). CPT is developed by the AMA as a listing of descriptive terms and five character identifying codes and modifiers for reporting medical services and procedures performed by physician.

The responsibility for the content of Blue Cross Blue Shield of Louisiana Medical Policy Coverage Guidelines is with Blue Cross and Blue Shield of Louisiana and no endorsement by the AMA is intended or should be implied. The AMA disclaims responsibility for any consequences or liability attributable or related to any use, nonuse or interpretation of information contained in Blue Cross Blue Shield of Louisiana Medical Policy Coverage Guidelines. Fee schedules, relative value units, conversion factors and/or related components are not assigned by the AMA, are not part of CPT, and the AMA is not recommending their use. The AMA does not directly or indirectly practice medicine or dispense medical services. The AMA assumes no liability for data contained or not contained herein. Any use of CPT outside of Blue Cross Blue Shield of Louisiana Medical Policy Coverage Guidelines should refer to the most current Current Procedural Terminology which contains the complete and most current listing of CPT codes and descriptive terms. Applicable FARS/DFARS apply.

CPT is a registered trademark of the American Medical Association.

Codes used to identify services associated with this policy may include (but may not be limited to) the following:

<table>
<thead>
<tr>
<th>Code Type</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPT</td>
<td>38204, 38205, 38206, 38207, 38208, 38209, 38210, 38211, 38212, 38213, 38214, 38215, 38230, 38232, 38240, 38241, 38242</td>
</tr>
<tr>
<td>HCPCS</td>
<td>S2140, S2142, S2150</td>
</tr>
<tr>
<td>ICD-10 Diagnosis</td>
<td>C40.00-C40.092, C41.0-C41.9, C49.0-C49.9, C64.1-C64.9, C69.20-C69.22, C74.00-C74.92</td>
</tr>
</tbody>
</table>

©2020 Blue Cross and Blue Shield of Louisiana

Blue Cross and Blue Shield of Louisiana is an independent licensee of the Blue Cross and Blue Shield Association and incorporated as Louisiana Health Service & Indemnity Company.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without permission from Blue Cross and Blue Shield of Louisiana.
Hematopoietic Cell Transplantation for Solid Tumors of Childhood

Policy # 00064
Original Effective Date: 01/28/2002
Current Effective Date: 08/10/2020

*Investigational – A medical treatment, procedure, drug, device, or biological product is Investigational if the effectiveness has not been clearly tested and it has not been incorporated into standard medical practice. Any determination we make that a medical treatment, procedure, drug, device, or biological product is Investigational will be based on a consideration of the following:

A. Whether the medical treatment, procedure, drug, device, or biological product can be lawfully marketed without approval of the U.S. Food and Drug Administration (FDA) and whether such approval has been granted at the time the medical treatment, procedure, drug, device, or biological product is sought to be furnished; or

B. Whether the medical treatment, procedure, drug, device, or biological product requires further studies or clinical trials to determine its maximum tolerated dose, toxicity, safety, effectiveness, or effectiveness as compared with the standard means of treatment or diagnosis, must improve health outcomes, according to the consensus of opinion among experts as shown by reliable evidence, including:

1. Consultation with the Blue Cross and Blue Shield Association technology assessment program (TEC) or other nonaffiliated technology evaluation center(s);
2. Credible scientific evidence published in peer-reviewed medical literature generally recognized by the relevant medical community; or
3. Reference to federal regulations.

**Medically Necessary (or “Medical Necessity”) - Health care services, treatment, procedures, equipment, drugs, devices, items or supplies that a Provider, exercising prudent clinical judgment, would provide to a patient for the purpose of preventing, evaluating, diagnosing or treating an illness, injury, disease or its symptoms, and that are:

A. In accordance with nationally accepted standards of medical practice;
B. Clinically appropriate, in terms of type, frequency, extent, level of care, site and duration, and considered effective for the patient's illness, injury or disease; and
C. Not primarily for the personal comfort or convenience of the patient, physician or other health care provider, and not more costly than an alternative service or sequence of services at least as likely to produce equivalent therapeutic or diagnostic results as to the diagnosis or treatment of that patient's illness, injury or disease.

For these purposes, “nationally accepted standards of medical practice” means standards that are based on credible scientific evidence published in peer-reviewed medical literature generally recognized by the relevant medical community, Physician Specialty Society recommendations and the views of Physicians practicing in relevant clinical areas and any other relevant factors.
Hematopoietic Cell Transplantation for Solid Tumors of Childhood

Policy # 00064
Original Effective Date: 01/28/2002
Current Effective Date: 08/10/2020

‡ Indicated trademarks are the registered trademarks of their respective owners.

NOTICE: If the Patient’s health insurance contract contains language that differs from the BCBSLA Medical Policy definition noted above, the definition in the health insurance contract will be relied upon for specific coverage determinations.

NOTICE: Medical Policies are scientific based opinions, provided solely for coverage and informational purposes. Medical Policies should not be construed to suggest that the Company recommends, advocates, requires, encourages, or discourages any particular treatment, procedure, or service, or any particular course of treatment, procedure, or service.