Computer-Aided Evaluation of Malignancy with Magnetic Resonance Imaging of the Breast

Policy # 00410
Original Effective Date: 08/19/2015
Current Effective Date: 08/15/2018

Applies to all products administered or underwritten by Blue Cross and Blue Shield of Louisiana and its subsidiary, HMO Louisiana, Inc. (collectively referred to as the “Company”), unless otherwise provided in the applicable contract. Medical technology is constantly evolving, and we reserve the right to review and update Medical Policy periodically.

Services Are Considered Investigational
Coverage is not available for investigational medical treatments or procedures, drugs, devices or biological products.

Based on review of available data, the Company considers the use of computer-aided evaluation (CAE) for interpretation of magnetic resonance imaging (MRI) of the breast to be investigational.*

Background/Overview
The use of CAE is proposed to assist radiologists' interpretation of contrast-enhanced MRI of the breast. MRI of the breast is suggested as an alternative or adjunct to mammography or other screening and diagnostic tests because of its high sensitivity in detecting breast lesions. However, it has a high false-positive rate because it is difficult to distinguish between benign and malignant lesions. MRI may be used to screen women at high risk of breast cancer or to look for more extensive disease in women diagnosed with breast cancer who are eligible for breast-conserving surgery; it is also being studied to gauge the impact of cancer treatment.

CAE systems reviewed here are intended to improve the specificity of MRI in detecting or measuring malignant tissue, while maintaining the generally high sensitivity of MRI. Improved ability to identify MRI-detected lesions that are almost certainly benign could potentially reduce biopsy rates. There is anecdotal evidence that MRI also may reduce reoperation rates among patients undergoing breast-conserving surgery by more clearly identifying tissue that should be removed. CAE also may reduce the time needed to interpret breast MRI images, which currently takes longer than reading mammograms.

CAE systems for MRI provide an easier way to interpret patterns of contrast enhancement across a series of images, which in turn may help identify lesions and their likelihood of being malignant. Two key aspects of enhancement (also called kinetics) are examined: (1) Within the first minute or so, how quickly does the lesion enhance up to a certain threshold (e.g., 50% or 100% of the initial value; rapid enhancement [>90% in 90 seconds] suggests malignancy)? (2) What is the subsequent pattern of enhancement (i.e., continues to increase [persistently ascending], plateaus, or declines [called washout, which is associated with malignancy])?

In contrast to computer-aided detection systems used with mammography, CAE for MRI is not primarily intended to identify lesions for consideration by a radiologist. Unlike the subtle appearance of lesions on mammography, most cancers enhance on MRI. The challenge is determining which lesions are benign and
which malignant. A large number of images are produced during MRI of the breast: images are taken at varying “depths” throughout each breast multiplied by the number of times the breast is imaged to capture different time points in the enhancement process; this can produce hundreds of images. Radiologists view the images to detect suspicious areas, and then pick a region of interest and look at the enhancement pattern. However, there may be variations across radiologists in the regions of interest selected and in the precise definition of the region of interest. CAE systems, in contrast, use color-coding and differences in hue to indicate the pattern of enhancement for each pixel in the breast image, thereby allowing radiologists to analyze enhancement patterns systematically.

FDA or Other Governmental Regulatory Approval
U.S. Food and Drug Administration (FDA)
Several computer-aided evaluation systems for use with MRI of the breast have been cleared for marketing by the U.S. FDA through the 510(k) process, some systems of which may have broader uses beyond breast MRI. Examples of FDA-cleared devices include:

- SpectraLook®, part of iCAD’s VersaVue® Enterprise Suite (iCAD, Nashua, NH) was cleared for marketing by FDA through the 510(k) process in 2012. The VersaVue Enterprise Suite is intended for postprocessing of magnetic resonance images as a means for visualizing these images. A previous version of this device, 3TP (3Time Point), was cleared in 2008.
- CADstream® (Merge Healthcare, Milwaukee, WI) was cleared for marketing by FDA through the 510(k) process in 2003, at which time it was distributed by Confirma (Kirkland, WA).
- Aegis™ Breast (Hologic Inc., Marlborough, MA; previously owned by Sentinelle Medical) was cleared for marketing by FDA through the 510(k) process in 2007. However, in the 510(k) documents, the manufacturer stated that the primary goal of the technology is “to identify where and how deep a biopsy or localization needle should be inserted into an imaged breast.”
- DynaCAD for Breast (MRI Devices, Waukesha, WI; now from Invivo, Gainesville, FL) was cleared for marketing by FDA through the 510(k) process in 2004.

Centers for Medicare and Medicaid Services (CMS)
There is no national coverage determination (NCD). In the absence of an NCD, coverage decisions are left to the discretion of local Medicare carriers.

Rationale/Source

Clinical Validity
To demonstrate the impact of CAE in the diagnosis of breast cancer, studies that compare the sensitivity and specificity of MRI with and without the use of CAE systems are needed. Such studies can demonstrate the incremental diagnostic accuracy of CAE compared with no CAE. Ideally, these studies should be
prospective and evaluate a population of patients similar to that presenting for breast cancer screening or diagnosis in a clinical setting.

Systematic Reviews

This evidence review was originally informed by a 2006 TEC Assessment on computer-aided detection of malignancy, which summarized 4 published articles and 4 abstracts that compared the accuracy of MRI with and without CAE. The reviewed studies focused on commercially available CAE systems, but articles on other systems were included. Also, studies had to report on cancer detection based on histologic results. Three of the articles reported on development and validation of CAE systems aimed at distinguishing between malignant and benign lesions, and they used information on women with known lesions. The fourth article provided information on one of the noncommercial systems used to evaluate women with cancer who were eligible for breast-conserving therapy. Conclusions of the TEC Assessment were that the literature on CAE with MRI of the breast was sparse overall and that few studies addressed specific situations in which CAE with MRI is used in a clinical setting. The articles and abstracts calculated test characteristics by lesions and not the number of women or breasts. In a screening population, many women would not have any lesions; including these women might alter the results. Given MRI’s lower sensitivity in detecting ductal carcinoma in situ, the mix of ductal carcinoma in situ vs invasive masses would affect the calculations of sensitivity and specificity and might affect the impact of the CAE system.

A more recent systematic review of the literature on CAE with MRI for breast cancer diagnosis was published in 2011 by Dorrius et al. Reviewers identified 10 CAE studies in women with benign and/or malignant breast lesions (Breast Imaging Reporting and Data System [BI-RADS] category ≥2). In a meta-analyses of 3 studies (211 lesions, 55% malignant), one of which used 3.0-Tesla (T) MRI, sensitivity of experienced radiologists’ blinded readings was 89% both with and without CAE, but the specificity decreased from 86% (95% confidence interval [CI], 79% to 91%) without CAE to 82% (95% CI, 76% to 87%) with CAE, a statistically nonsignificant difference. Reviewers attributed the decrease to a greater reliance by radiologists on the contrast enhancement pattern provided by CAE in the absence of morphology data, which CAE does not provide. For residents with limited breast MRI experience, the specificity was approximately 78% with or without CAE, but the sensitivity increased from 72% (95% CI, 62% to 81%) without CAE to 89% (95% CI, 80% to 94%) with CAE, a statistically nonsignificant difference. Statistical heterogeneity was moderate to substantial (I² range, 56%-83%) for all results except for the specificity of residents’ readings both with and without CAE, which had low-to-moderate statistical heterogeneity (I² range, 24%-33%).

Retrospective Diagnostic Accuracy Studies

Larger representative diagnostic accuracy studies published after the 2011 systematic review are described next. All studies are retrospective analyses that included populations of patients not reflective of those seen in clinical care. Most were conducted in Asia where protocols may differ from those used in the United States.
Yun et al (2016) in South Korea retrospectively studied 124 patients newly diagnosed with breast cancer. Patients underwent conventional MRI and MRI plus CAE as part of a preoperative assessment of the extent of breast cancer. A commercially available CAE device (CADstream) was used. Images were evaluated by 2 experienced radiologists blinded to histopathology results and patient characteristics. Analysis focused on differences in CAE MRI parameters in axillary lymph node–positive patients (n=34 [26%]) and axillary lymph node–negative patients (n=90 [74%]). The diagnostic accuracy of conventional MRI for differentiating between benign and metastatic axillary lymph nodes was 84.7%, with a sensitivity of 82.4% and a specificity of 85.7%. When CAE with MRI was used, the sensitivity improved to 91.2%, and the specificity to 94.4%, though neither sensitivity (p=0.403) nor specificity (p=0.086) was statistically significant with CAE. However, overall accuracy (defined by the area under the receiver operating characteristic curve) increased from 83.7% without CAE to 93.5% with CAE.

Song et al (2015) in Korea retrospectively evaluated 86 patients with invasive breast cancer using MRI alone, MRI plus CAE, mammography, ultrasound computed tomography, and fluorodeoxyglucose with positron emission tomography. Patients underwent all imaging procedures and did not have adjuvant chemotherapy or an excisional biopsy during the previous 6 months. For MRI plus CAE, the CADstream device was used, and pathologic analysis was used as the reference standard. Two experienced radiologists blinded to the pathology report independently evaluated each image and final decisions were reached by consensus. There were no significant differences among all 6 imaging methods for measuring tumor size (p=0.017). Also, there were no significant differences in measuring pathologic tumor size between MRI with and without CAE. For evaluation of lymph node status, there was no significant difference in the diagnostic accuracy of MRI alone and MRI plus CAE.

Liu et al (2014) retrospectively compared radiologists’ readings of 3.0-T MRI images with readings by CAE (DynaCAD) in 78 consecutive patients with newly diagnosed breast lesions at a single institution in China. Lesions less than 0.8 cm in long-axis diameter were excluded (sensitivity was not assessed). Diagnoses of 93 mass-like and non-mass-like lesions (eg, ductal carcinoma in situ, invasive lobular carcinoma, papilloma) were confirmed by needle core biopsy (n=13) or surgical histology (n=80). Of 51 mass-like lesions, 29 were malignant; of 42 non-mass-like lesions, 23 were malignant. Three experienced radiologists blinded to histologic diagnosis performed MRI readings, and 3 radiologists performed CAE readings; it is unclear whether they were the same radiologists. Overall diagnostic accuracy was 74% for radiologists and 87% for CAE. For mass-like lesions, accuracy was similar between radiologists and CAE. For non-mass-like lesions, accuracy was 67% for radiologists and 86% for CAE. Limitations of this study included calculation of test characteristics based on the number of lesions rather than on the number of women or the number of breasts. Further, results may be applicable only to patients with lesions greater than 0.8 cm and possibly only to readings made by 3.0-T MRI.

Lehman et al (2013) reported on a U.S.-based multicenter, retrospective study of 9 experienced and 11 inexperienced radiologists who read a set of dynamic contrast-enhanced breast MRIs twice, once with and once without CADstream. Of 70 MRIs in the set, 27 had a benign outcome, and 43 had a malignant
outcome. Among experienced readers, sensitivity increased from 84% without CAE to 91% with CAE, a statistically significant difference of 7 percentage points (95% CI, 4 to 11). Among inexperienced readers, sensitivity increased from 77% to 83% with CAE, a difference of 6 percentage points (95% CI, 1 to 10). Specificity (BI-RADS category 3 [considered negative]) did not change with the addition of CAE for either group. Similarly, overall diagnostic accuracy did not change statistically for either group: For experienced readers, the area under the receiver operating characteristic curve was 0.80 without CAE and 0.83 with CAE (these values were reversed without subsequent correction in the narrative description of results). For inexperienced readers, the area under the receiver was 0.77 without CAE and 0.79 with CAE. There was no significant difference in overall time to assessment with or without CAE.

Section Summary: Clinical Validity
A 2006 TEC assessment found insufficient literature on CAE of malignancy with breast MRI, and a 2011 systematic review did not find statistically significant differences in diagnostic accuracy between CAE plus MRI and MRI alone. Several studies were published after the systematic review, and most did not find that CAE plus MRI resulted in statistically significant improvement in diagnostic accuracy. Studies were retrospective in nature and tended to include women already diagnosed with breast cancer.

Clinical Utility
To demonstrate clinical utility, prospective studies that evaluate whether incremental diagnostic accuracy leads to changes in management and improved outcomes are needed. Decisions for biopsies may be changed as a result of CAE; in particular, biopsies may be performed in areas of abnormality identified by CAE not seen on standard MRI. This might, in turn, improve the detection rate for malignancies. It is also possible that the number of false-positive biopsies might be increased when CAE is used.

There is no direct evidence (ie, prospective studies) that evaluates the impact of CAE on health outcomes. There are also no relevant modeling studies that estimate the impact of CAE on outcomes. Because incremental changes in sensitivity and specificity with CAE are unknown, it is not possible to estimate the number of additional malignancies that would be detected by CAE, nor is it possible to determine the number of additional false-positive biopsies that would be performed. As a result, the clinical utility of CAE when added to standard MRI of the breast has yet to be determined.

Section Summary: Clinical Utility
No published comparative studies were available on the impact of CAE plus MRI on patient management and health outcomes compared with MRI alone. Furthermore, there is insufficient information to formulate a model of indirect evidence to support clinical utility. Thus, the utility of CAE plus MRI in clinical care cannot be determined from the literature.

SUMMARY OF EVIDENCE
For individuals with risk of breast cancer, with suspected breast cancer, or diagnosed with breast cancer, who receive CAE of breast malignancy with MRI, the evidence includes diagnostic accuracy studies and
systematic reviews. Relevant outcomes are disease-specific survival, test accuracy and validity, and resource utilization. The most recent systematic review (2011) did not find a statistically significant improvement in the sensitivity and specificity with MRI plus CAE vs MRI alone. Moreover, retrospective studies published in the last 5 years generally did not find that CAE resulted in statistically significant improvement in diagnostic accuracy compared with MRI alone. Studies were generally conducted in women already diagnosed with breast cancer; there is less literature on breast cancer detection. Also, there are no comparative studies evaluating the impact of CAE with MRI on patient management decisions or health outcomes compared with MRI alone. The evidence is insufficient to determine the effects of the technology on health outcomes.

References

Policy History

Original Effective Date: 08/19/2015

©2018 Blue Cross and Blue Shield of Louisiana

Blue Cross and Blue Shield of Louisiana is an independent licensee of the Blue Cross and Blue Shield Association and incorporated as Louisiana Health Service & Indemnity Company.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without permission from Blue Cross and Blue Shield of Louisiana.
Computer-Aided Evaluation of Malignancy with Magnetic Resonance Imaging of the Breast

Policy # 00410
Original Effective Date: 08/19/2015
Current Effective Date: 08/15/2018

Current Effective Date: 08/15/2018
08/06/2015 Medical Policy Committee review
08/19/2015 Medical Policy Implementation Committee approval. New policy
08/04/2016 Medical Policy Committee review
08/17/2016 Medical Policy Implementation Committee approval. No change to coverage.
01/01/2017 Coding update: Removing ICD-9 Diagnosis Codes
08/03/2017 Medical Policy Committee review
08/23/2017 Medical Policy Implementation Committee approval. No change to coverage.
08/09/2018 Medical Policy Committee review
08/15/2018 Medical Policy Implementation Committee approval. No change to coverage.

Next Scheduled Review Date: 08/2019

Coding
The five character codes included in the Blue Cross Blue Shield of Louisiana Medical Policy Coverage Guidelines are obtained from Current Procedural Terminology (CPT®), copyright 2017 by the American Medical Association (AMA). CPT is developed by the AMA as a listing of descriptive terms and five character identifying codes and modifiers for reporting medical services and procedures performed by physician.

The responsibility for the content of Blue Cross Blue Shield of Louisiana Medical Policy Coverage Guidelines is with Blue Cross and Blue Shield of Louisiana and no endorsement by the AMA is intended or should be implied. The AMA disclaims responsibility for any consequences or liability attributable or related to any use, nonuse or interpretation of information contained in Blue Cross Blue Shield of Louisiana Medical Policy Coverage Guidelines. Fee schedules, relative value units, conversion factors and/or related components are not assigned by the AMA, are not part of CPT, and the AMA is not recommending their use. The AMA does not directly or indirectly practice medicine or dispense medical services. The AMA assumes no liability for data contained or not contained herein. Any use of CPT outside of Blue Cross Blue Shield of Louisiana Medical Policy Coverage Guidelines should refer to the most current Current Procedural Terminology which contains the complete and most current listing of CPT codes and descriptive terms. Applicable FARS/DFARS apply.

CPT is a registered trademark of the American Medical Association.

Codes used to identify services associated with this policy may include (but may not be limited to) the following:

<table>
<thead>
<tr>
<th>Code Type</th>
<th>Code Type</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPT</td>
<td>0159T</td>
<td></td>
</tr>
<tr>
<td>HCPCS</td>
<td>No codes</td>
<td></td>
</tr>
<tr>
<td>ICD-10 Diagnosis</td>
<td>C50.011-C50.029</td>
<td>C50.111-C50.129</td>
</tr>
<tr>
<td></td>
<td>C50.411-C50.429</td>
<td>C50.511-C50.529</td>
</tr>
<tr>
<td></td>
<td>C50.911-C50.929</td>
<td>C79.81</td>
</tr>
<tr>
<td></td>
<td>D05.90-D05.92</td>
<td>N63</td>
</tr>
</tbody>
</table>
Computer-Aided Evaluation of Malignancy with Magnetic Resonance Imaging of the Breast

Policy # 00410
Original Effective Date: 08/19/2015
Current Effective Date: 08/15/2018

*Investigational – A medical treatment, procedure, drug, device, or biological product is Investigational if the effectiveness has not been clearly tested and it has not been incorporated into standard medical practice. Any determination we make that a medical treatment, procedure, drug, device, or biological product is Investigational will be based on a consideration of the following:

A. Whether the medical treatment, procedure, drug, device, or biological product can be lawfully marketed without approval of the U.S. FDA and whether such approval has been granted at the time the medical treatment, procedure, drug, device, or biological product is sought to be furnished; or

B. Whether the medical treatment, procedure, drug, device, or biological product requires further studies or clinical trials to determine its maximum tolerated dose, toxicity, safety, effectiveness, or effectiveness as compared with the standard means of treatment or diagnosis, must improve health outcomes, according to the consensus of opinion among experts as shown by reliable evidence, including:

1. Consultation with the Blue Cross and Blue Shield Association technology assessment program (TEC) or other nonaffiliated technology evaluation center(s);
2. Credible scientific evidence published in peer-reviewed medical literature generally recognized by the relevant medical community; or
3. Reference to federal regulations.

‡ Indicated trademarks are the registered trademarks of their respective owners.

NOTICE: Medical Policies are scientific based opinions, provided solely for coverage and informational purposes. Medical Policies should not be construed to suggest that the Company recommends, advocates, requires, encourages, or discourages any particular treatment, procedure, or service, or any particular course of treatment, procedure, or service.