Cytochrome P450 Genotype-Guided Treatment Strategy

Policy # 00169
Original Effective Date: 07/15/2005
Current Effective Date: 08/15/2018

Applies to all products administered or underwritten by Blue Cross and Blue Shield of Louisiana and its subsidiary, HMO Louisiana, Inc. (collectively referred to as the “Company”), unless otherwise provided in the applicable contract. Medical technology is constantly evolving, and we reserve the right to review and update Medical Policy periodically.

Note: Pharmacogenomic and Metabolite Markers for Patients Treated with Thiopurines is addressed separately in medical policy 00237.

Note: Genetic Testing for Warfarin Dose is addressed separately in medical policy 00245.

Note: Genetic Testing for Tamoxifen Treatment is addressed separately in medical policy 00269.

Note: Genetic Testing for Mental Health Conditions is addressed separately in medical policy 00402.

When Services Are Eligible for Coverage
Coverage for eligible medical treatments or procedures, drugs, devices or biological products may be provided only if:

- Benefits are available in the member's contract/certificate, and
- Medical necessity criteria and guidelines are met.

Based on review of available data, the Company may consider CYP2D6 genotyping to determine drug metabolizer status to be eligible for coverage.

Patient Selection Criteria
Coverage eligibility for CYP2D6 genotyping to determine drug metabolizer status will be met for patients:

- With Gaucher disease being considered for treatment with eliglustat; OR
- With Huntington disease being considered for treatment with tetrabenazine in a dosage greater than 50 mg per day.

When Services Are Considered Investigational
Coverage is not available for investigational medical treatments or procedures, drugs, devices or biological products.

Based on review of available data the Company considers cytochrome P450 (CYP450) genotyping for the purpose of aiding in the choice of clopidogrel versus alternative anti-platelet agents, or in decisions on the optimal dosing for clopidogrel to be investigational.*

Based on review of available data, the Company considers CYP450 genotyping for the purpose of aiding in the choice of drug or dose to increase efficacy and/or avoid toxicity for the following drugs, aside from determinations in the separate policies noted above to be investigational.*

This includes, but is not limited to, CYP450 genotyping for the following applications:

- Selection or dosing of codeine;
Cytochrome P450 Genotype-Guided Treatment Strategy

Policy # 00169
Original Effective Date: 07/15/2005
Current Effective Date: 08/15/2018

- Dosing of efavirenz and other antiretroviral therapies for human immunodeficiency virus (HIV) infection;
- Dose of immunosuppressants for organ transplantation;
- Selection or dosing of beta blockers (e.g., metoprolol);
- Dosing and management of antitubercular medications.

Based on review of available data, the Company considers the use of genetic testing panels that include multiple CYP450 variants to be investigational.*

Background/Overview

DRUG EFFICACY AND TOXICITY

Drug efficacy and toxicity vary substantially across individuals. Because drugs and doses are typically adjusted, if needed, by trial-and-error, clinical consequences may include a prolonged time to optimal therapy. In some cases, serious adverse events may result.

Multiple factors may influence the variability of drug effects, including age, liver function, concomitant diseases, nutrition, smoking, and drug-drug interactions. Inherited (germline) deoxyribonucleic acid (DNA) sequence variation in genes coding for drug-metabolizing enzymes, drug receptors, drug transporters, and molecules involved in signal transduction pathways also may have major effects on the activity of those molecules and thus on the efficacy or toxicity of a drug.

Pharmacogenomics studies how an individual’s genetic inheritance affects the body’s response to drugs. It may be possible to predict therapeutic failures or severe adverse drug reactions in individual patients by testing for important DNA variants (genotyping) in genes related to the metabolic pathway (pharmacokinetics) or signal transduction pathway (pharmacodynamics) of the drug. Potentially, test results could be used to optimize drug choice and/or dose for more effective therapy, avoid serious adverse events, and decrease medical costs.

CYTOCHROME P450 SYSTEM

The cytochrome P450 (CYP450) family is a major subset of all drug-metabolizing enzymes; several CYP450 enzymes are involved in the metabolism of a significant proportion of currently administered drugs. CYP2D6 metabolizes approximately 25% of all clinically used medications (e.g., dextromethorphan, β-blockers, antiarrhythmics, antidepressants, morphine derivatives), including most prescribed drugs. CYP2C19 metabolizes several important types of drugs, including proton pump inhibitors, diazepam, propanolol, imipramine, and amitriptyline.

Some CYP450 enzymes are highly polymorphic, resulting in some enzyme variants that have variable metabolic capacities among individuals, and some with little to no impact on activity. Thus, CYP450 enzymes constitute an important group of drug-gene interactions influencing the variability of the effect of some CYP450-metabolized drugs.
Individuals with 2 copies (alleles) of the most common (wild-type) DNA sequence of a particular CYP450 enzyme gene resulting in an active molecule are termed extensive metabolizers (EMs; normal). Poor metabolizers (PMs) lack active enzyme gene alleles, and intermediate metabolizers, who have 1 active and 1 inactive enzyme gene allele, may experience to a lesser degree some of the consequences of PMs. Ultrarapid metabolizers (UMs) are individuals with more than 2 alleles of an active enzyme gene. There is pronounced ethnic variability in the population distribution of metabolizer types for a given CYP enzyme.

UMs administered an active drug may not reach therapeutic concentrations at usual recommended doses of active drugs, while PMs may suffer more adverse events at usual doses due to reduced metabolism and increased concentrations. Conversely, for administered prodrugs that must be converted by CYP450 enzymes into active metabolites, UMs may suffer adverse events, and PMs may not respond.

Many drugs are metabolized to varying degrees by more than 1 enzyme, either within or outside of the CYP450 superfamily. Also, the interaction between different metabolizing genes, the interaction between genes and environment, and interactions among different nongenetic factors also influence CYP450-specific metabolizing functions. Thus, identification of a variant in a single gene in the metabolic pathway may be insufficient in all but a small proportion of drugs to explain interindividual differences in metabolism and consequent efficacy or toxicity.

DETERMINING GENETIC VARIABILITY IN DRUG RESPONSE

Genetically determined variability in drug response has been traditionally addressed using a trial-and-error approach to prescribing and dosing, along with therapeutic drug monitoring for drugs with a very narrow therapeutic range and/or potentially serious adverse events outside that range. However, therapeutic drug monitoring is not available for all drugs of interest, and a cautious trial-and-error approach can lengthen the time to achieving an effective dose.

CYP450 enzyme phenotyping (identifying metabolizer status) can be accomplished by administering a test enzyme substrate to a patient and monitoring parent substrate and metabolite concentrations over time (e.g., in urine). However, testing and interpretation are time-consuming and inconvenient; as a result, phenotyping is seldom performed.

The clinical utility of *CYP450* genotyping (i.e., the likelihood that genotyping will significantly improve drug choice, dosing, and patient outcomes) may be favored when the drug under consideration has a narrow therapeutic dose range, when the consequences of treatment failure are severe, and/or when serious adverse reactions are more likely in patients with gene sequence variants. Under these circumstances, genotyping may direct early selection of the most effective drug or dose, and/or avoid drugs or doses likely to cause toxicity. For example, warfarin, some neuroleptics, and tricyclic antidepressants have narrow therapeutic windows and can cause serious adverse events when concentrations exceed certain limits, resulting in cautious dosing protocols. The potential severity of the disease condition may call for immediate and sufficient therapy; genotyping might speed up the process of achieving a therapeutic dose and avoiding significant adverse events.
FDA or Other Governmental Regulatory Approval

U.S. Food and Drug Administration (FDA)

Clinical laboratories may develop and validate tests in-house and market them as a laboratory service; laboratory-developed tests must meet the general regulatory standards of the Clinical Laboratory Improvement Amendments. Diagnostic genotyping tests for certain CYP450 enzymes are available under the auspices of the Clinical Laboratory Improvement Amendments. Laboratories that offer laboratory-developed tests must be licensed by the Clinical Laboratory Improvement Amendments for high-complexity testing. To date, the U.S. FDA has chosen not to require any regulatory review of this test.

Several testing kits for CYP450 genotyping cleared for marketing by FDA (FDA product code: NTI) are summarized in Table 1.

Table 1. Testing Kits for CYP450 Genotyping Cleared for Marketing by FDA

<table>
<thead>
<tr>
<th>Device Name</th>
<th>Manufacturer</th>
<th>Approval Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>xTAG Cyp2d6 Kit V3</td>
<td>Luminex Molecular Diagnostics</td>
<td>2017</td>
</tr>
<tr>
<td>xTAG Cyp2c19 Kit V3</td>
<td>Luminex Molecular Diagnostics</td>
<td>2013</td>
</tr>
<tr>
<td>Spartan Rx Cyp2c19 Test System</td>
<td>Spartan Bioscience</td>
<td>2015</td>
</tr>
<tr>
<td>xTAG Cyp2d6 Kit V3 (Including Tdas Cyp2d)</td>
<td>Luminex Molecular Diagnostics</td>
<td>2013</td>
</tr>
<tr>
<td>Verigene Cyp2c19 Nucleic Acid Test (2c19)</td>
<td>Nanosphere</td>
<td>2012</td>
</tr>
<tr>
<td>Infiniti Cyp2c19 Assay</td>
<td>Autogenomics</td>
<td>2010</td>
</tr>
<tr>
<td>xTAG Cyp2d6 Kit V3, Model I030c0300 (96)</td>
<td>Luminex Molecular Diagnostics</td>
<td>2010</td>
</tr>
<tr>
<td>Invader Ugt1a1 Molecular Assay</td>
<td>Third Wave Technologies</td>
<td>2005</td>
</tr>
<tr>
<td>Roche AmpliChip Cyp450 Test</td>
<td>Roche Molecular Systems</td>
<td>2005</td>
</tr>
<tr>
<td>FDA: Food and Drug Administration.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Several manufacturers market diagnostic genotyping panel tests for CYP450 genes, such as the YouScript Panel (Genelex Corp.), which includes CYP2D6, CYP2C19, CYP2C9, VKORC1, CYP3A4, and CYP3A5. Other panel tests include both CYP450 and other non-CYP450 genes involved in drug metabolism, such as the GeneSight Psychotropic panel (Assurex Health) and PersonaGene Genetic Panels (AlBioTech). These tests are beyond the scope of this evidence review.

FDA Labeling on CYP450 Genotyping

FDA has included pharmacogenomics information in the physician prescribing information (drug labels) of multiple drugs. In most cases, this information is general and lacks specific directives for clinical decision making. In the following examples, FDA has given clear and specific directives on either use of a specific dose (e.g., eliglustat, tetrabenazine) or when a drug may not be used at all (e.g., codeine) and therefore evidence in such cases is not reviewed in the Rationale section.

Eliglustat

The FDA has approved eliglustat for treatment of adults with Gaucher disease type 1 who are CYP2D6 EMs, intermediate metabolizers, or PMs as detected by an FDA-cleared test. Further, the label acknowledges the limitation of use among UMs because they may not achieve adequate concentrations and a specific dosage was not recommended for patients with indeterminate CYP2D6 metabolizer's status. Further, the label states that the dosing strategy should be 84 mg orally, twice daily for CYP2D6 EMs or...
intermediate metabolizers and 84 mg orally, once daily for CYP2D6 PMs. FDA has included a black box to warn about the reduced effectiveness in PMs and to advise healthcare professionals to consider alternative dosing or to use of other medications in patients identified as potential PMs.

Tetrabenazine
FDA has approved tetrabenazine for the treatment of chorea associated with Huntington disease. According to the label, patients requiring doses above 50 mg/d should be genotyped for the drug-metabolizing enzyme CYP2D6 to determine if the patient is a PM or EM. For patients categorized as PMs using an FDA-approved test, the maximum daily dose should not exceed 50 mg, with a maximum single dose of 25 mg.

Codeine
FDA does not recommend genotyping before prescribing codeine. FDA has contraindicated codeine for treating pain or cough in children under 12 years of age and codeine is not recommended for use in adolescents ages 12 to 18 who are obese or have conditions such as obstructive sleep apnea or severe lung disease. There is an additional warning to mothers not to breastfeed when taking codeine.

Centers for Medicare and Medicaid Services (CMS)
There is no national coverage determination. In the absence of a national coverage determination, coverage decisions are left to the discretion of local Medicare carriers.

Rationale/Source
The primary goal of pharmacogenomics testing and personalized medicine is to achieve better clinical outcomes in compared with the standard of care. Drug response varies greatly between individuals, and genetic factors are known to play a role. However, in most cases, the genetic variation only explains a modest portion of the variance in the individual response because clinical outcomes are also affected by a wide variety of factors including alternate pathways of metabolism and patient- and disease-related factors that may affect absorption, distribution, and elimination of the drug. Therefore, assessment of clinical utility cannot be made by a chain of evidence from clinical validity data alone. In such cases, evidence evaluation requires studies that directly demonstrate that the pharmacogenic test alters clinical outcomes; it is not sufficient to demonstrate that the test predicts a disorder or a phenotype.

Evidence reviews assess the clinical evidence to determine whether the use of a technology improves the net health outcome. Broadly defined, health outcomes are length of life, quality of life, and ability to function—including benefits and harms. Every clinical condition has specific outcomes that are important to patients and to managing the course of that condition. Validated outcome measures are necessary to ascertain whether a condition improves or worsens; and whether the magnitude of that change is clinically significant. The net health outcome is a balance of benefits and harms.

To assess whether the evidence is sufficient to draw conclusions about the net health outcome of a technology, 2 domains are examined: the relevance and the quality and credibility. To be relevant, studies must represent one or more intended clinical use of the technology in the intended population and compare an effective and appropriate alternative at a comparable intensity. For some conditions, the alternative will
be supportive care or surveillance. The quality and credibility of the evidence depend on study design and conduct, minimizing bias and confounding that can generate incorrect findings. The randomized controlled trial (RCT) is preferred to assess efficacy; however, in some circumstances, nonrandomized studies may be adequate. RCTs are rarely large enough or long enough to capture less common adverse events and long-term effects. Other types of studies can be used for these purposes and to assess generalizability to broader clinical populations and settings of clinical practice.

P450 GENOTYPE-GUIDED TREATMENT STRATEGY

Clinical Context and Therapy Purpose
The purpose of a P450 genotype-guided strategy is to tailor selection and dosing of drugs based on gene composition for drug metabolism. In theory, this should lead to early selection and optimal dosing of the most effective drugs, while minimizing treatment failures or toxicities.

The question addressed in this evidence review is: Does P450 genotype-guided strategy change patient management in a way that improves net health outcome?

The following PICOTS were used to select literature to inform this review.

Patients
The relevant populations of interest are patients being considered for treatment with clopidogrel, eliglustat, tetrabenazine, selective serotonin reuptake inhibitors, serotonin-norepinephrine reuptake inhibitors, tricyclic antidepressants, antipsychotic drugs, codeine, efavirenz and other antiretroviral therapies for HIV infection, immunosuppressants for organ transplantation, β-blockers (e.g., metoprolol), and antitubercular medications.

Interventions
Commercial tests for individual genes or gene panels are available and are listed in the Regulatory Status section. Only those panels that include CYP450 genes are listed in that section.

Comparators
The following practice is currently being used: standard clinical management without genetic testing.

Outcomes
Specific outcomes of interest are listed in Table 2.
Table 2. Outcomes of Interest for Individuals With Altered Drug Metabolism

<table>
<thead>
<tr>
<th>Drug</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clopidogrel</td>
<td>• Initial and maintenance dose selection</td>
</tr>
<tr>
<td></td>
<td>• Decrease in platelet reactivity</td>
</tr>
<tr>
<td></td>
<td>• Myocardial infarction, cardiovascular or all-cause death, revascularization, fatal/nonfatal cerebrovascular accident, aortic event</td>
</tr>
<tr>
<td>Highly active antiretroviral agents</td>
<td>• Dose selection</td>
</tr>
<tr>
<td></td>
<td>• Avoidance of treatment failure</td>
</tr>
<tr>
<td></td>
<td>• Avoidance or reduction of adverse events</td>
</tr>
<tr>
<td>Immunosuppressant therapy for organ transplantation</td>
<td>• Dose selection</td>
</tr>
<tr>
<td></td>
<td>• Avoidance of organ failure</td>
</tr>
<tr>
<td></td>
<td>• Avoidance or reduction of adverse events</td>
</tr>
<tr>
<td>β-blocker(s)</td>
<td>• Dose selection</td>
</tr>
<tr>
<td></td>
<td>• Superior control of blood pressure</td>
</tr>
<tr>
<td></td>
<td>• Avoidance or reduction of adverse events due to overtreatment</td>
</tr>
<tr>
<td>Antitubercular medications</td>
<td>• Dose selection</td>
</tr>
<tr>
<td></td>
<td>• Avoidance or reduction of hepatotoxicity due to overtreatment</td>
</tr>
</tbody>
</table>

Timing
Outcomes in the first 3 months are relevant because the interest is in whether P450 genotype-guided strategy reduces adverse events or avoids treatment failure.

Setting
Consultations about the choice of the drug generally occur in an outpatient setting, and a variety of specialists may be involved including primary care providers (HIV, β-blockers, tuberculosis and cough medications), cardiologists (clopidogrel), psychiatrists (antidepressants, antipsychotics), neurologists (Huntington disease), and endocrinologists (Gaucher disease).

Clopidogrel
Dual antiplatelet therapy with aspirin and a P2Y12 inhibitor (clopidogrel, prasugrel, ticagrelor) is the standard of care for the prevention of subsequent atherothrombotic events such as stent thrombosis or recurrent acute coronary syndrome in patients who undergo a percutaneous intervention or who have an acute coronary syndrome.

Clopidogrel is a prodrug that is converted to its active form by several CYP450 enzymes (particularly CYP2C19). Individuals with genetic variants that inactivate the CYP2C19 enzyme are associated with lack of response to clopidogrel. There are several variants of CYP2C19 but the 2 most frequent variants associated with loss of function alleles are CYP2C19*2 and CYP2C19*3. It is hypothesized that such individuals may benefit from other drugs such as prasugrel or ticagrelor or a higher dose of clopidogrel. Approximately 30% of whites and blacks and 65% of Asians carry a nonfunctional CYP2C19 gene variant. While CYP2C19 is the major enzyme involved in the generation of clopidogrel active metabolite, the variability in clinical response seen with clopidogrel may also result from other factors such as variable absorption, accelerated platelet turnover, reduced CYP3A metabolic activity, increased adenosine...
Cytochrome P450 Genotype-Guided Treatment Strategy

Policy # 00169
Original Effective Date: 07/15/2005
Current Effective Date: 08/15/2018

diphosphate exposure, or upregulation of P2Y12 pathways, drug-drug interactions, comorbidities (e.g., diabetes, obesity), and medication adherence.

Multiple observational studies in patients undergoing percutaneous coronary intervention (PCI) have reported associations between the presence of loss of function alleles and lower levels of active clopidogrel metabolites, high platelet reactivity, and increased risk of adverse cardiovascular events. However, evidence of publication bias has been reported in these studies where smaller studies have reported larger benefits than larger studies which have reported no effect or smaller effect. Wang et al (2016) reported post hoc analysis of the CHANCE trial conducted in China; it randomized patients with a transient ischemic attack or minor stroke to clopidogrel plus aspirin or aspirin alone. In a subgroup analysis of patients who did not have the loss of function alleles, clopidogrel plus aspirin vs aspirin alone was associated with statistical significant reduction in the risk of stroke (6.7% vs 12.4%; hazard ratio, 0.51; 95% confidence interval, 0.35 to 0.75) but not among those who carried loss of function alleles (9.4% vs 10.8%; hazard ratio, 0.93; 95% confidence interval, 0.69 to 1.26). Results of this analysis have contributed to the formulation of the hypothesis of a differential effect of clopidogrel in patients with and without loss of function alleles.

Trials are important to validate such hypotheses. However, only a few trials of genotype-directed dosing or drug choice have been conducted; they are summarized in Tables 3 and 4 and discussed next. It is important to note that these trials use “high on-treatment platelet reactivity” as the outcome measure. Patients who exhibit “high on-treatment platelet reactivity” are referred to as being nonresponsive, hypo-responsive, or resistant to clopidogrel in the published literature.

Roberts et al (2012) reported on the results of RCT that allocated patients undergoing PCI for acute coronary syndrome or stable angina to genotype-guided management to select for treatment with prasugrel (carriers) or clopidogrel (noncarriers) or to standard treatment with clopidogrel. Among those who received prasugrel and clopidogrel based on genotyping test, 0% and 10%, respectively, exhibited high on-treatment reactivity while 17% patients who received standard treatment with clopidogrel without any genotypes testing exhibited high on-treatment reactivity. This difference was not statistically significant. So et al (2016) reported on the results of an RCT that randomized ST-elevation myocardial infarction patients who were carriers of CYP2C19*2, ABCB1 TT, and CYP2C19*17 alleles to prasugrel 10 mg daily or an augmented dosing strategy of clopidogrel (150 mg/d for 6 days and subsequently 75 mg/d). Results showed that (1) carriers did not respond to augmented clopidogrel as well as they did to prasugrel (24% patients with high platelet reactivity vs 0%) and (2) among noncarriers, physician-directed clopidogrel was effective for most patients (95% did not have high platelet reactivity).
Table 3. Summary of Key RCT Characteristics

<table>
<thead>
<tr>
<th>Study; Trial</th>
<th>Countries</th>
<th>Sites</th>
<th>Dates</th>
<th>Participants</th>
<th>Interventions</th>
</tr>
</thead>
<tbody>
<tr>
<td>So et al (2016); RAPID STEMI</td>
<td>Canada</td>
<td>1</td>
<td>2011-2012</td>
<td>18-75 y who had PCI for STEMI who received POC testing for CYP2C192, ABCB1 TT, and CYP2C1917 alleles (N=102)</td>
<td>Carriers randomized to prasugrel 10 mg/d (n=30) or augmented clopidogrel (150 mg/d for 6 d and then 75 mg/d) (n=29)</td>
</tr>
<tr>
<td>Roberts et al (2012); RAPID GENE</td>
<td>Canada</td>
<td>1</td>
<td>2010-2011</td>
<td>18-75 y undergoing PCI for acute coronary syndrome or stable angina (n=200)</td>
<td>POC testing for CYP2C19*2 allele (n=102). Of these, 23 carriers were given prasugrel 10 mg/d, and 74 noncarriers were given clopidogrel 75 mg/d</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Active</th>
<th>Comparator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carriers</td>
<td>Noncarriers given clopidogrel with dosing as per treating physician (n=43)</td>
</tr>
</tbody>
</table>

PCI: percutaneous coronary intervention; POC: point of care; RCT: randomized controlled trial; STEMI: ST-elevation myocardial infarction.

Table 4. Summary of Key RCT Results

<table>
<thead>
<tr>
<th>Study; Trial</th>
<th>High Platelet Reactivity<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>So et al (2016); RAPID STEMI</td>
<td>102</td>
</tr>
<tr>
<td>Carriers</td>
<td></td>
</tr>
<tr>
<td>Prasugrel</td>
<td>0%<sup>d</sup></td>
</tr>
<tr>
<td>Augmented clopidogrel</td>
<td>24%<sup>d</sup></td>
</tr>
<tr>
<td>Noncarriers</td>
<td></td>
</tr>
<tr>
<td>Clopidogrel as per treating physician</td>
<td>5%<sup>d</sup></td>
</tr>
<tr>
<td>p</td>
<td>0.0046<sup>b</sup>; 0.507<sup>c</sup></td>
</tr>
<tr>
<td>Roberts et al (2012); RAPID GENE</td>
<td>187</td>
</tr>
<tr>
<td>Genotype-guided management</td>
<td></td>
</tr>
<tr>
<td>Prasugrel 10 mg/d</td>
<td>0%</td>
</tr>
<tr>
<td>Clopidogrel 75 mg/d</td>
<td>10%</td>
</tr>
<tr>
<td>Entire cohort</td>
<td>10%</td>
</tr>
<tr>
<td>Standard clinical management</td>
<td></td>
</tr>
<tr>
<td>Clopidogrel 75 mg/d</td>
<td>17%<sup>a</sup></td>
</tr>
<tr>
<td>p</td>
<td>NS</td>
</tr>
</tbody>
</table>

^a P2Y12 reaction unit >234 (a measure of high on-treatment platelet reactivity).
^b Prasugrel vs augmented clopidogrel.
^c Prasugrel vs physician-directed clopidogrel.
^d At 30 days.
^a At 1 week.
The purpose of the gaps tables (see Tables 5 and 6) is to display notable gaps identified in each study. This information is synthesized as a summary of the body of evidence following each table and provides the conclusions on the sufficiency of the evidence supporting the position statement. The studies were, in general, well-designed and -conducted, the major limitation being the use of platelet activity, which is an intermediate outcome measure, and lack of reporting on health endpoints over a longer follow-up.

Platelet reactivity during treatment is an intermediate end point that has been shown to have a limited value in guiding therapeutic decisions based on results of the large ARTIC RCT. Briefly, the ARCTIC trial randomized 2440 patients scheduled for coronary stenting to platelet-function monitoring or no monitoring. Platelet-function testing was performed in the monitored group both before and 14 to 30 days after PCI. Multiple therapeutic changes, including an additional loading dose of clopidogrel (at a dose ≥600 mg) or a loading dose of prasugrel (at a dose of 60 mg) before the procedure, followed by a daily maintenance dose of clopidogrel 150 mg or prasugrel 10 mg, were made according to a predefined protocol. There was no difference in the rate of the primary composite end point (death, myocardial infarction, stent thrombosis, stroke, or urgent revascularization) at 1 year between the monitoring (34.6%) and no monitoring groups (31.1%). In the absence of results from well-performed randomized trials designed to evaluate this issue, performing routine genetic testing or ex vivo tests of platelet reactivity to predict CYP2C19 metabolic state and identify PMs has not been shown to improve health clinical outcomes. TAILOR-PCI (NCT01742117) is a large ongoing RCT that will randomize 5270 patients undergoing PCI to clopidogrel without prospective genotyping guidance or a prospective CYP2C19 genotype-based antiplatelet therapy approach (ticagrelor 90 mg bid in CYP2C19*2 or CYP2C19*3 reduced function allele patients, clopidogrel 75 mg once daily in non-CYP2C19*2 or -CYP2C19*3 patients). The trial is expected to be completed in March 2020.

Table 5. Relevance Gaps

<table>
<thead>
<tr>
<th>Study</th>
<th>Population</th>
<th>Intervention</th>
<th>Comparator</th>
<th>Outcomes</th>
<th>Follow-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>So et al (2016); RAPID STEMI</td>
<td></td>
<td>2. Platelet activity is an intermediate outcome measure</td>
<td>1, 2. Outcomes assessed at 1 mo</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. CONSORT harms not reported</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roberts et al (2012); RAPID GENE</td>
<td></td>
<td>2. Platelet activity is an intermediate outcome measure</td>
<td>1, 2. Outcomes assessed at 1 wk</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. CONSORT harms no reported</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The evidence gaps stated in this table are those notable in the current review; this is not a comprehensive gaps assessment.

- **Population key:** 1. Intended use population unclear; 2. Clinical context is unclear; 3. Study population is unclear; 4. Study population not representative of intended use.
- **Intervention key:** 1. Not clearly defined; 2. Version used unclear; 3. Delivery not similar intensity as comparator; 4. Not the intervention of interest.
- **Comparator key:** 1. Not clearly defined; 2. Not standard or optimal; 3. Delivery not similar intensity as intervention; 4. Not delivered effectively.
- **Outcomes key:** 1. Key health outcomes not addressed; 2. Physiologic measures, not validated surrogates; 3. No CONSORT reporting of harms; 4. Not establish and validated measurements; 5. Clinical significant difference not prespecified; 6. Clinical significant difference not supported.
Table 6. Study Design and Conduct Gaps

<table>
<thead>
<tr>
<th>Study</th>
<th>Allocation</th>
<th>Blinding</th>
<th>Selective Reporting</th>
<th>Data Completeness</th>
<th>Power</th>
<th>Statistical Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>So et al (2016); RAPID STEMI</td>
<td>1. Allocation concealment unclear</td>
<td>1. Not blinded to treatment assignment; 2. Not blinded outcome assessment; 3. Outcome assessed by treating physician.</td>
<td>1. Not registered; 2. Evidence of selective reporting; 3. Evidence of selective publication.</td>
<td>1. High loss to follow-up or missing data; 2. Inadequate handling of missing data; 3. High number of crossovers; 4. Inadequate handling of crossovers; 5. Inappropriate exclusions; 6. Not intent to treat analysis (per protocol for noninferiority trials).</td>
<td>1. Power calculations not reported; 2. Power not calculated for primary outcome; 3. Power not based on clinically important difference.</td>
<td>1. Intervention is not appropriate for outcome type: (a) continuous; (b) binary; (c) time to event; 2. Intervention is not appropriate for multiple observations per patient; 3. Confidence intervals and/or p values not reported; 4. Comparative treatment effects not calculated.</td>
</tr>
<tr>
<td>Roberts et al (2012); RAPID GENE</td>
<td>3. Allocation concealment unclear</td>
<td>1. Not blinded to treatment assignment; 2. Not blinded outcome assessment; 3. Outcome assessed by treating physician.</td>
<td>1. Not registered; 2. Evidence of selective reporting; 3. Evidence of selective publication.</td>
<td>1. High loss to follow-up or missing data; 2. Inadequate handling of missing data; 3. High number of crossovers; 4. Inadequate handling of crossovers; 5. Inappropriate exclusions; 6. Not intent to treat analysis (per protocol for noninferiority trials).</td>
<td>1. Power calculations not reported; 2. Power not calculated for primary outcome; 3. Power not based on clinically important difference.</td>
<td>1. Intervention is not appropriate for outcome type: (a) continuous; (b) binary; (c) time to event; 2. Intervention is not appropriate for multiple observations per patient; 3. Confidence intervals and/or p values not reported; 4. Comparative treatment effects not calculated.</td>
</tr>
</tbody>
</table>

The evidence gaps stated in this table are those notable in the current review; this is not a comprehensive gaps assessment.

- Data Completeness key: 1. High loss to follow-up or missing data; 2. Inadequate handling of missing data; 3. High number of crossovers; 4. Inadequate handling of crossovers; 5. Inappropriate exclusions; 6. Not intent to treat analysis (per protocol for noninferiority trials).
- Power key: 1. Power calculations not reported; 2. Power not calculated for primary outcome; 3. Power not based on clinically important difference.
- Statistical key: 1. Intervention is not appropriate for outcome type: (a) continuous; (b) binary; (c) time to event; 2. Intervention is not appropriate for multiple observations per patient; 3. Confidence intervals and/or p values not reported; 4. Comparative treatment effects not calculated.

Section Summary: Clopidogrel

Two RCTs have evaluated the role of genetic testing for CYP2C19 for selecting appropriate antiplatelet treatment and/or amplified dosing of clopidogrel using an intermediate outcome measure of platelet reactivity to predict CYP2C19 metabolic state. One RCT has shown there was no statistical difference in patients with “on-treatment high platelet reactivity” who received genotype-guided management or standard treatment with clopidogrel. The second RCT showed that carriers of loss of function alleles did not respond to augmented clopidogrel as well as they did to prasugrel, while physician-directed clopidogrel was effective for most noncarriers. However, routine testing using platelet reactivity as an outcome measure to predict CYP2C19 metabolic state has not been shown to improve health outcomes. Results of an ongoing RCT (TAILOR-PCI), assessing outcomes in 5270 patients randomized to genotype-based antiplatelet therapy approach or standard care, are expected in 2020 and likely to address this gap.

Selection and Dosing of Other Drugs

Antiretroviral Agents

Efavirenz is a widely used non-nucleoside reverse transcriptase inhibitor component of highly active antiretroviral therapy for patients with HIV infection. However, unpredictable interindividual variability in efficacy and toxicity remain important limitations associated with its use. Forty percent to 70% of patients have reported adverse central nervous system events. While most resolve in the first few weeks of...
Cytochrome P450 Genotype-Guided Treatment Strategy

Policy # 00169
Original Effective Date: 07/15/2005
Current Effective Date: 08/15/2018

treatment, about 6% of patients discontinue efavirenz due to adverse events. Efavirenz is primarily metabolized by the CYP2B6 enzyme, and inactivating variants such as CYP2B6*6 are associated with higher efavirenz exposure, although plasma levels appear not to correlate with adverse events. On the other hand, CYP2B6 PMs have markedly reduced adverse events while maintaining viral immunosuppression at substantially lower doses. An increased early discontinuation rate with efavirenz has been reported in retrospective cohort studies evaluating multiple CYP450 variants including CYP2B6. CYP2B6 G516T and T983C single nucleotide variants were reported by Ciccacci et al (2013) to be associated with susceptibility to Stevens-Johnson syndrome in a case-control study of 27 patients who received nevirapine-containing antiretroviral treatment. The current evidence documenting the usefulness of CYP450 variant genotyping to prospectively guide antiretroviral medications and assess its impact on clinical outcomes is lacking.

Immunosuppressants for Therapy for Organ Transplantation
Tacrolimus is the mainstay immunosuppressant drug and multiple studies have shown that individuals who express CYP3A5 (extensive and intermediate metabolizers) generally have decreased dose-adjusted trough concentrations of tacrolimus, possibly delaying achievement of target blood concentrations compared with those who are CYP3A5 nonexpressers (PMs) in whom drug levels may be elevated and possibly result in nephrotoxicity. The current evidence demonstrating the impact of CYP3A5 genotyping to guide tacrolimus dosing and its impact on clinical outcomes is a limited RCT by Thervet et al (2010). This RCT compared the impact of CYP3A5 genotype-informed dosing with standard dosing strategies on tacrolimus drug levels. The trial was not powered to assess any clinical outcomes such as graft function or survival, which otherwise were similar between groups.

β-Blockers
Several reports have indicated that lipophilic β-blockers (e.g., metoprolol), used in treating hypertension, may exhibit impaired elimination in patients with CYP2D6 variants. The current evidence documenting the usefulness of CYP2D6 genotyping to prospectively guide antitubercular medications and assess its impact on clinical outcomes is lacking.

Antitubercular Medications
A number of studies, summarized in a systematic review by Wang et al (2016), have reported an association between CYP2E1 status and the risk of liver toxicity from antitubercular medications. The current evidence documenting the usefulness of CYP2E1 genotyping to prospectively guide antitubercular medications and assess its impact on clinical outcomes is lacking.

Section Summary: Selection and Dosing of Other Drugs
In general, most published CYP450 pharmacogenomic studies for highly active antiretroviral agents, β-blockers, and antitubercular medications are retrospective evaluations of CYP450 genotype associations, reporting intermediate outcomes (e.g., circulating drug concentrations) or less often, final outcomes (e.g., adverse events or efficacy). Many of these studies are small, underpowered, and hypothesis generating. Prospective intervention studies, including RCTs documenting clinical usefulness of CYP450 genotyping to
Cytochrome P450 Genotype-Guided Treatment Strategy

Policy # 00169
Original Effective Date: 07/15/2005
Current Effective Date: 08/15/2018

improve existing clinical decision-making to guide dose or drug selection, which will then translate into improvement in patient outcomes, were not identified.

SUMMARY OF EVIDENCE

Clopidogrel
For individuals with a need for antiplatelet therapy who are undergoing or being considered for clopidogrel therapy who receive a CYP2C19-guided treatment strategy, the evidence includes 2 RCTs. Relevant outcomes are overall survival, medication use, and treatment-related morbidity. The 2 RCTs evaluated the impact of CYP2C19 genotyping using an intermediate outcome measure (platelet reactivity). One RCT showed no statistical difference between patients with on-treatment high platelet reactivity between genotype-guided management or standard treatment with clopidogrel. The second RCT showed carriers of loss of function alleles did not respond to augmented clopidogrel as well as they did to prasugrel, and physician-directed clopidogrel was effective for most noncarriers. However, routine testing using platelet reactivity as an outcome measure to predict CYP2C19 metabolic state has not been shown to improve health outcomes. Results of an ongoing RCT (TAILOR-PCI), assessing outcomes in 5270 patients randomized to genotype-based antiplatelet therapy approach or standard care, are expected in 2020 and likely to address this gap. The evidence is insufficient to determine the effects of the technology on health outcomes.

Other Drugs
For individuals who are undergoing or being considered for treatment with highly active antiretroviral agents, immunosuppressant therapy for organ transplantation, β-blockers, or antitubercular medications who receive a CYP2C19-guided treatment strategy, the evidence includes retrospective studies. Relevant outcomes are medication use and treatment-related morbidity. In general, most published CYP450 pharmacogenomic studies for these drugs consist of retrospective evaluations of CYP450 genotype associations, reporting intermediate outcomes (e.g., circulating drug concentrations) or less often, final outcomes (e.g., adverse events or efficacy). Many of these studies are small, underpowered and hypothesis generating. Prospective intervention studies, including RCTs documenting the clinical usefulness of CYP450 genotyping to improve existing clinical decision making to guide dose or drug selection, which may then translate into improvement in patient outcomes, were not identified. The evidence is insufficient to determine the effects of the technology on health outcomes.

References

©2018 Blue Cross and Blue Shield of Louisiana

Blue Cross and Blue Shield of Louisiana is an independent licensee of the Blue Cross and Blue Shield Association and incorporated as Louisiana Health Service & Indemnity Company.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without permission from Blue Cross and Blue Shield of Louisiana.
Cytochrome P450 Genotype-Guided Treatment Strategy

Policy # 00169
Original Effective Date: 07/15/2005
Current Effective Date: 08/15/2018

Policy History

Original Effective Date: 07/15/2005
Current Effective Date: 08/15/2018

©2018 Blue Cross and Blue Shield of Louisiana

Blue Cross and Blue Shield of Louisiana is an independent licensee of the Blue Cross and Blue Shield Association and incorporated as Louisiana Health Service & Indemnity Company.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without permission from Blue Cross and Blue Shield of Louisiana.
Cytochrome P450 Genotype-Guided Treatment Strategy

Policy # 00169
Original Effective Date: 07/15/2005
Current Effective Date: 08/15/2018

05/02/2007 Medical Director Review
05/07/2009 Medical Director Review
05/20/2009 Medical Policy Committee approval. Added a statement with seven bulleted applications for clarification of CYP450 genotyping to, “Services Are Considered Investigational” section. Coverage eligibility unchanged.
06/03/2010 Medical Policy Committee review
06/16/2010 Medical Policy Implementation Committee approval. Policy statement regarding cytochrome p450 genetic testing to guide selection or dose of beta blockers added as investigational criteria.
05/05/2011 Medical Policy Committee review
05/18/2011 Medical Policy Implementation Committee approval. Changed the use of CYP450 genotyping with clopidogrel (Plavix) from investigational to eligible for coverage.
05/03/2012 Medical Policy Committee review
05/16/2012 Medical Policy Implementation Committee approval. Coverage eligibility unchanged.
05/02/2013 Medical Policy Committee review
05/22/2013 Medical Policy Implementation Committee approval.
05/01/2014 Medical Policy Committee review
05/21/2014 Medical Policy Implementation Committee approval. Added “dosing and management of antituberculosis medications” to the investigational applications.
05/07/2015 Medical Policy Committee review
05/20/2015 Medical Policy Implementation Committee approval. Added INV statement for the use of genetic testing panels that include multiple CYP450 mutations. Updated existing INV bullet “dosing of codeine” and “dose of efavirenz and other antiretroviral therapies”.
02/04/2016 Medical Policy Committee review
02/17/2016 Medical Policy Implementation Committee approval. Policy statements for CYP2B6 genotyping added. CYP450 genotyping in choosing or dosing clopidogrel changed to INV. Serotonin-norepinephrine reuptake inhibitors added to existing INV indication for CYP450 genotyping.
01/01/2017 Coding update: Removing ICD-9 Diagnosis Codes
02/02/2017 Medical Policy Committee review
02/15/2017 Medical Policy Implementation Committee approval. Coverage eligibility unchanged.
01/01/2018 Coding update
02/01/2018 Medical Policy Committee review
02/21/2018 Medical Policy Implementation Committee approval. Coverage eligibility unchanged.
04/01/2018 Coding update
08/09/2018 Medical Policy Committee review
08/15/2018 Medical Policy Implementation Committee approval. Policy title changed from “Cytochrome P450 Genotyping” to “Cytochrome P450 Genotype-Guided Treatment Strategy”. Four criteria removed from the third investigational statement; the intent of statements otherwise unchanged. Information on pharmacologic treatments used to treat mental health disorders were removed from this policy and added to policy 00402.
08/30/2018 Coding update
Next Scheduled Review Date: 08/2019

©2018 Blue Cross and Blue Shield of Louisiana
Blue Cross and Blue Shield of Louisiana is an independent licensee of the Blue Cross and Blue Shield Association and incorporated as Louisiana Health Service & Indemnity Company.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without permission from Blue Cross and Blue Shield of Louisiana.
Cytochrome P450 Genotype-Guided Treatment Strategy

Policy # 00169
Original Effective Date: 07/15/2005
Current Effective Date: 08/15/2018

Coding
The five character codes included in the Blue Cross Blue Shield of Louisiana Medical Policy Coverage Guidelines are obtained from Current Procedural Terminology (CPT®), copyright 2017 by the American Medical Association (AMA). CPT is developed by the AMA as a listing of descriptive terms and five character identifying codes and modifiers for reporting medical services and procedures performed by physician.

The responsibility for the content of Blue Cross Blue Shield of Louisiana Medical Policy Coverage Guidelines is with Blue Cross and Blue Shield of Louisiana and no endorsement by the AMA is intended or should be implied. The AMA disclaims responsibility for any consequences or liability attributable or related to any use, nonuse or interpretation of information contained in Blue Cross Blue Shield of Louisiana Medical Policy Coverage Guidelines. Fee schedules, relative value units, conversion factors and/or related components are not assigned by the AMA, are not part of CPT, and the AMA is not recommending their use. The AMA does not directly or indirectly practice medicine or dispense medical services. The AMA assumes no liability for data contained or not contained herein. Any use of CPT outside of Blue Cross Blue Shield of Louisiana Medical Policy Coverage Guidelines should refer to the most current Current Procedural Terminology which contains the complete and most current listing of CPT codes and descriptive terms. Applicable FARS/DFARS apply.

CPT is a registered trademark of the American Medical Association.

Codes used to identify services associated with this policy may include (but may not be limited to) the following:

<table>
<thead>
<tr>
<th>Code Type</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPT</td>
<td>81225, 81226, 81227, 81401, 81402, 81404, 81405</td>
</tr>
<tr>
<td></td>
<td>Codes added eff 1/1/2018: 0029U, 0031U, 81230, 81231</td>
</tr>
<tr>
<td></td>
<td>Code deleted eff 10/1/2018: 0028U</td>
</tr>
<tr>
<td>HCPCS</td>
<td>No codes</td>
</tr>
<tr>
<td></td>
<td>I63.40-I63.9, I66.01-I66.9, I73.9</td>
</tr>
</tbody>
</table>

*Investigational – A medical treatment, procedure, drug, device, or biological product is Investigational if the effectiveness has not been clearly tested and it has not been incorporated into standard medical practice. Any determination we make that a medical treatment, procedure, drug, device, or biological product is Investigational will be based on a consideration of the following:

A. Whether the medical treatment, procedure, drug, device, or biological product can be lawfully marketed without approval of the U.S. Food and Drug Administration (FDA) and whether such approval has been granted at the time the medical treatment, procedure, drug, device, or biological product is sought to be furnished; or

B. Whether the medical treatment, procedure, drug, device, or biological product requires further studies or clinical trials to determine its maximum tolerated dose, toxicity, safety, effectiveness, or effectiveness as compared with the standard means of treatment or diagnosis, must improve health outcomes, according to the consensus of opinion among experts as shown by reliable evidence, including:

1. Consultation with the Blue Cross and Blue Shield Association technology assessment program (TEC) or other nonaffiliated technology evaluation center(s);

2. Credible scientific evidence published in peer-reviewed medical literature generally recognized by the relevant medical community; or

3. Reference to federal regulations.

©2018 Blue Cross and Blue Shield of Louisiana

Blue Cross and Blue Shield of Louisiana is an independent licensee of the Blue Cross and Blue Shield Association and incorporated as Louisiana Health Service & Indemnity Company.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without permission from Blue Cross and Blue Shield of Louisiana.
**Medically Necessary (or “Medical Necessity”) - Health care services, treatment, procedures, equipment, drugs, devices, items or supplies that a Provider, exercising prudent clinical judgment, would provide to a patient for the purpose of preventing, evaluating, diagnosing or treating an illness, injury, disease or its symptoms, and that are:

A. In accordance with nationally accepted standards of medical practice;
B. Clinically appropriate, in terms of type, frequency, extent, level of care, site and duration, and considered effective for the patient's illness, injury or disease; and
C. Not primarily for the personal comfort or convenience of the patient, physician or other health care provider, and not more costly than an alternative service or sequence of services at least as likely to produce equivalent therapeutic or diagnostic results as to the diagnosis or treatment of that patient's illness, injury or disease.

For these purposes, “nationally accepted standards of medical practice” means standards that are based on credible scientific evidence published in peer-reviewed medical literature generally recognized by the relevant medical community, Physician Specialty Society recommendations and the views of Physicians practicing in relevant clinical areas and any other relevant factors.

† Indicated trademarks are the registered trademarks of their respective owners.

NOTICE: Medical Policies are scientific based opinions, provided solely for coverage and informational purposes. Medical Policies should not be construed to suggest that the Company recommends, advocates, requires, encourages, or discourages any particular treatment, procedure, or service, or any particular course of treatment, procedure, or service.