Genetic Testing for Hereditary Hemochromatosis

Policy # 00430
Original Effective Date: 10/15/2014
Current Effective Date: 10/18/2017

Applies to all products administered or underwritten by Blue Cross and Blue Shield of Louisiana and its subsidiary, HMO Louisiana, Inc. (collectively referred to as the “Company”), unless otherwise provided in the applicable contract. Medical technology is constantly evolving, and we reserve the right to review and update Medical Policy periodically.

When Services Are Eligible for Coverage
Coverage for eligible medical treatments or procedures, drugs, devices or biological products may be provided only if:

- Benefits are available in the member’s contract/certificate, and
- Medical necessity criteria and guidelines are met.

Based on review of available data, the Company may consider genetic testing for human hemochromatosis (HFE) gene variants in a patient with abnormal serum iron indices indicating iron overload to be eligible for coverage.

Based on review of available data, the Company may consider genetic testing for human hemochromatosis (HFE) gene variants in individuals with a family history of hemochromatosis in a first-degree relative to be eligible for coverage.

When Services Are Considered Investigational
Coverage is not available for investigational medical treatments or procedures, drugs, devices or biological products.

Based on review of available data, the Company considers genetic testing for hereditary hemochromatosis (HH) in screening of the general population to be investigational.*

Background/Overview
Iron Overload Syndromes
Iron overload syndromes may be hereditary, secondary to some other disease (eg, iron-loading anemias, parenteral iron overload, chronic liver disease, or dysmetabolic iron overload syndrome), or due to other miscellaneous conditions (eg, neonatal iron overload, aceruloplasminemia, congenital atransferrinemia).

Iron overload, if left untreated, can lead to secondary tissue damage in a wide range of organs resulting in chronic liver disease (hepatic fibrosis, cirrhosis, hepatocellular carcinoma), endocrine dysfunction (diabetes, hypogonadism), arthralgia or arthritis (typically involving the second and third metacarpophalangeal joints), and cardiomyopathy (with either symptomatic cardiac failure or arrhythmias).

Hereditary hemochromatosis, an autosomal recessive disorder, is the most common identified genetic disorder in white people, with an estimated prevalence of 1 in 250. However, fully expressed disease with end-organ manifestations is seen in less than 10% of affected individuals. Factors that influence phenotypic expression of HFE (high iron-related HH [ie, the clinical appearance of iron overload]) are not clearly

©2017 Blue Cross and Blue Shield of Louisiana

Blue Cross and Blue Shield of Louisiana is an independent licensee of the Blue Cross and Blue Shield Association and incorporated as Louisiana Health Service & Indemnity Company.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without permission from Blue Cross and Blue Shield of Louisiana.
Genetic Testing for Hereditary Hemochromatosis

Policy # 00430
Original Effective Date: 10/15/2014
Current Effective Date: 10/18/2017

defined. Low clinical penetrance may be due to a complex interplay of genetic status and other factors such as age, sex, environmental influences, and comorbid diseases.

HH leads to inappropriate iron absorption from the intestine and progressive increase in intracellular iron concentrations. Untreated HH leads to premature death, usually by liver complications. Treatment by removing excess iron with serial phlebotomy is simple and effective, and if started before irreversible end-organ damage, restores normal life expectancy.

Diagnosis of Hemochromatosis
Patients with hemochromatosis may present with nonspecific systemic symptoms or specific organ-related symptoms, or they may be asymptomatic. Clinical diagnosis of hemochromatosis is based on documentation of increased iron stores as demonstrated by abnormal serum iron indices, specifically elevated transferrin saturation and elevated serum ferritin concentration. Liver biopsy has been used to confirm diagnosis but is now generally limited to determining the degree of hepatic fibrosis and cirrhosis during disease management. Most patients with a diagnosis of hemochromatosis will exhibit a familial pattern, thereby confirming the diagnosis of HH. However the familial pattern may not be obvious due to the large percentage of undiagnosed patients in some families, and further evaluation of family members may be required to establish whether a familial pattern is present.

General population screening for HH has been proposed because of the high prevalence of disease, absence of or nonspecific early clinical findings, specificity of findings once they appear, low cost of diagnosis and treatment, and high cost and low success rate of late diagnosis and treatment. However, because penetrance is low, and the natural history of asymptomatic individuals is unpredictable, support for population-based screening is lacking. A U.S. Preventive Services Task Force (USPSTF) review of the literature suggested that up to 38% to 50% of C282Y homozygotes may develop iron overload, with up to 10% to 33% eventually developing hemochromatosis-associated morbidity. The American Academy of Family Physicians, Centers for Disease Control and Prevention, and USPSTF recommend against population-based general screening.

Treatment of HH
The main treatment modality for patients with HH is periodic phlebotomy. While there has never been a randomized controlled trial of phlebotomy versus no phlebotomy in the treatment of HH, there is evidence from nonrandomized studies that initiation of phlebotomy before the development of cirrhosis and/or diabetes will significantly reduce HH-associated morbidity and mortality.

Genetics of HH
Most patients with HH have variants in the HFE gene, located on the short arm of chromosome 6. The HFE gene was identified and cloned in 1996. The most common variant in the HFE gene is C282Y, a missense mutation that changes cysteine at position 282 in the HFE protein to tyrosine. Homozygosity for the C282Y mutation is associated with 60% to 90% of all cases of HH. Additionally, 3% to 8% of affected individuals are heterozygous for this mutation. Penetrance for elevated serum iron indices among C282Y homozygotes...
Genetic Testing for Hereditary Hemochromatosis

Policy # 00430
Original Effective Date: 10/15/2014
Current Effective Date: 10/18/2017

is relatively high, but not 100%. However, penetrance for characteristic clinical end points (ie, end-organ damage) is quite low. There is no test that can predict whether a C282Y homozygote will develop clinical symptoms. A specific variant in PCSK7, which is associated with iron metabolism, has been investigated as a possible predictor of cirrhosis risk in HH patients homozygous for the HFE C282Y variant.

Another significant HFE variant is referred to as H63D, which changes histidine at position 63 to aspartic acid. Homozygosity for H63D is insufficient to cause clinically significant iron overload in the absence of modifying factors. However, compound heterozygosity for C282Y/H63D has been associated with increased hepatic iron concentrations; approximately 1% to 2% of patients with this genotype will develop clinical evidence of iron overload, usually in the presence of another liver disease.

The clinical significance of a third HFE variant, S65C (serine at position 65 changed to cysteine), appears to be minimal. This rare variant displays very low penetrance. Compound heterozygosity for C282Y/S65C may confer a low risk for mild HH. Individuals who are heterozygous for S65C and either the wild-type (normal) or H63D alleles do not seem to be at an increased risk for HH. Other variants in HFE and in non-HFE genes (eg, transferrin receptor 2 [TFR2]) resulting in iron overload syndromes are rare.

With the advent of genetic testing in the late 1990s, HFE-related HH is now frequently identified in asymptomatic probands and in presymptomatic relatives of patients who are known to have the disease. Therefore, a genetic diagnosis can be made in subjects who have not yet developed phenotypic expression; these subjects have a genetic susceptibility to developing iron overload but may never do so. A 2000 consensus conference of the European Association for the Study of Liver Diseases led to recognition of different stages and progression of hemochromatosis. These stages were defined as:

1. Stage 1: Patients with “genetic susceptibility” Who have the genetic disorder but no increase in iron stores.
2. Stage 2: Patients who have the genetic disorder and phenotypic evidence of iron overload but no tissue or end-organ damage.
3. Stage 3: Patients who have the genetic disorder with iron overload and iron deposition to the degree that tissue and end-organ damage occurs.

FDA or Other Governmental Regulatory Approval

U.S. Food and Drug Administration (FDA)
Clinical laboratories may develop and validate tests in-house and market them as a laboratory service; laboratory-developed tests (LDTs) must meet the general regulatory standards of the Clinical Laboratory Improvement Act (CLIA). Laboratories that offer LDTs must be licensed by CLIA for high-complexity testing. To date, the U.S. FDA has chosen not to require any regulatory review of this test.

Centers for Medicare and Medicaid Services (CMS)
There is no national coverage determination (NCD). In the absence of an NCD, coverage decisions are left to the discretion of local Medicare carriers.
Rationale/Source
This review addresses BCBSA genetic testing categories 1a (diagnostic testing of an affected individual's germline to benefit the individual) and 3 (testing of an asymptomatic individual to determine future risk of disease) (see Appendix Table 1 for all genetic testing categories).

The evaluation of a genetic test focuses on 3 main principles: (1) analytic validity (technical accuracy of the test in detecting a variant that is present or in excluding a variant that is absent); (2) clinical validity (diagnostic performance of the test [sensitivity, specificity, positive and negative predictive values] in detecting clinical disease); and (3) clinical utility (ie, how results of the diagnostic test will be used to change management of the patient and whether these changes in management lead to clinically important improvements in health outcomes).

A 2001 TEC Assessment on genetic testing for \textit{HFE} gene variants related to HH concluded the following:

- Genetic testing and counseling for \textit{HFE} variants in the management of patients with symptoms of iron overload consistent with HH, in the setting of 2 consecutive transferrin saturation values of 45\% or more and a serum ferritin value of less than 200-300 \(\mu\text{g/L}\), met the TEC criteria.
- Genetic testing and counseling for \textit{HFE} variants in asymptomatic relatives of subjects with HH also met the TEC criteria.

The Assessment did not address the use of genetic testing for \textit{HFE} gene variants in screening of the general population.

TESTING INDIVIDUALS WITH ABNORMAL IRON INDICES OR SIGNS OF IRON OVERLOAD

Clinical Context and Test Purpose
The purpose of genetic testing of individuals with abnormal iron indices or clinical signs of iron overload is to determine the underlying cause of iron overload, detect disease at an earlier stage, and direct treatment to prevent irreversible organ damage.

The relevant question addressed in this evidence review is: Does genetic testing for \textit{HFE} lead to improved health outcomes?

The following PICOTS were used to select literature to inform this review.

Patients
The relevant population of interest includes individuals with abnormal iron indices or clinical signs of iron overload.

Interventions
The relevant intervention of interest is genetic testing for \textit{HFE}.

Comparators
The relevant comparator of interest is standard clinical management without genetic testing.
Outcomes
The potential beneficial outcome of primary interest is early detection of disease to prevent disease complications of iron overload.

Potential harmful outcomes are those resulting from a false-positive or false-negative test results. False-positive test results can lead to unnecessary treatments (eg, phlebotomy) that may not be efficacious. False-negative test results can lead to lack of appropriate treatments to prevent complications from iron overload.

Timing
The time frame for outcome measures varies from short-term development of clinical signs of iron overload to long-term complications such as liver failure and cirrhosis.

Setting
The primary setting would be in the primary care office where abnormal iron studies reveal iron overload.

Analytic Validity
Stuhrmann et al (2005) initiated a pilot study on DNA-based screening of HH in Germany. A focus of the study was the analytic validity of different test methods. A total of 3961 subjects provided blood samples for testing of the C282Y HFE variant; of these, 3930 samples were successfully tested by 2 independent test methods (either polymerase chain reaction and restriction digest, reverse allele-specific oligonucleotide hybridization, solid-phase oligonucleotide ligation assay, or microarray [DNA-chip]). In all, 67 of the tested subjects were homozygous for C282Y; 42.6% of them already knew their HH clinical diagnosis prior to sending the blood sample. Iron accumulation with further signs or symptoms of HH was present in 8 (24%) of 34 newly diagnosed C282Y homozygous subjects. Of 7860 tests performed, 7841 (99.6%) gave correct results. The overall error rate was 0.24% (95% confidence interval [CI], 0.15% to 0.38%). The analytic specificity of the test methods for detecting homozygosity for C282Y was 100% (7726/7726 nonhomozygous test challenges; 95% CI, 99.95% to 100%), and the analytic sensitivity was 97% (130/134 homozygous test challenges; 95% CI, 92.5% to 99.2%). This evidence indicates that test methods for C282Y are robust and highly sensitive and specific.

Clinical Validity
Bryant et al (2008) conducted a systematic review of 15 electronic databases to April 2007 to evaluate the clinical validity and clinical utility of DNA testing in people suspected of having HH and in family members of those diagnosed with the disorder. Clinical validity, defined as the ability of the test to detect or predict the phenotype (disorder) of interest, involved establishing the probability that the test would be positive in people with clinical HH (sensitivity) and the probability that the test would be negative in people without the disease (specificity). Studies were included if they reported the use of DNA tests in whites of northern European origin with iron overload suggestive of HH compared with a control population, and reported or allowed for the calculation of sensitivity and specificity.
Eleven observational studies were identified that evaluated the clinical validity of genotyping for the C282Y variant in the diagnostic workup for HH. Criteria used to define hemochromatosis varied among studies. The clinical sensitivity of C282Y homozygosity ranged from 28.4% to 100%; when considering studies that used strict criteria to classify HH, the clinical sensitivity ranged from 91.3% to 92.4%.

Section Summary: Clinical Validity
Observational studies have demonstrated that pathogenic variants in the *HFE* gene are responsible for most clinically significant cases of HH. Studies that used strict criteria to classify HH revealed that the clinical sensitivity of genetic testing for *HFE* common variants is high.

Clinical Utility
There are no studies reporting direct evidence of the clinical utility of genetic testing. Thus, the clinical utility of genetic testing for HH relies on whether a strong chain of evidence exists. The chain of evidence extrapolates clinical utility in the absence of direct clinical studies that demonstrate clinical utility and relies on the established analytic and clinical validity of a genetic test. Potential clinical utility via the chain of evidence shows how a genetic test result potentially impacts the diagnostic workup, alters patient management, and may lead to improved health outcomes.

Section Summary: Clinical Utility
Most individuals with HH can be diagnosed without genetic testing, based on a clinical diagnosis of hemochromatosis that occurs in a familial pattern. Individuals with an established diagnosis of HH will not directly benefit from genetic testing if irreversible organ damage has already occurred. However, some patients with signs and/or symptoms of HH may not have a definitive diagnosis after standard clinical workup. In these cases, genetic testing can confirm the diagnosis of HH when a pathogenic variant is identified. Following confirmation of diagnosis, management changes (i.e., treatment with phlebotomy) are likely to occur. Furthermore, early treatment of HH may prevent irreversible organ damage due to iron overload. As a result, genetic testing to confirm the diagnosis of HH has clinical utility in individuals with signs and symptoms of HH, but in whom a definitive diagnosis cannot be made without genetic testing.

TESTING ASYMPTOMATIC FIRST-DEGREE RELATIVES

Clinical Context and Test Purpose
The purpose of genetic testing of first-degree relatives of individuals with HH is to determine the need for surveillance for iron overload, detect disease at an early stage, and initiate early treatment before irreversible organ occurs.

The relevant question addressed in this evidence review is: Does genetic testing for *HFE* in asymptomatic first-degree relatives lead to improved health outcomes?

The following PICOTS were used to select literature to inform this review.
Patients
The relevant population of interest includes first-degree relatives of individuals with HH.

Interventions
The relevant intervention of interest is genetic testing for \textit{HFE}.

Comparators
The relevant comparator of interest is standard clinical management without genetic testing.

Outcomes
The potential beneficial outcomes of primary interest are to determine the need for surveillance of iron overload, to detect disease at an earlier stage, and to prevent irreversible organ damage.

Potential harmful outcomes are those resulting from a false-positive or false-negative test results. False-positive test results can lead to unnecessary surveillance for iron overload and treatments (eg, phlebotomy) that may not be efficacious. False-negative test results can lead to lack of surveillance for iron overload and treatments to prevent disease progression and irreversible organ damage.

Timing
The time frame for outcome measures varies from short-term development of clinical signs of iron overload to long-term complications such as liver failure and cirrhosis.

Setting
The primary setting would be in the primary care office where at-risk individuals are evaluated for risk of developing iron overload due to family history of HH.

Analytic Validity
See the discussion of analytic validity in the Testing Individuals With Abnormal Iron Indices or Signs or Symptoms of Iron Overload section.

Clinical Validity
Bulaj et al (2000) studied the prevalence of disease-related conditions among relatives of probands with hemochromatosis. The results showed that if the proband had a hemochromatosis-related condition, male relatives were more likely to have morbidity than if the proband had no hemochromatosis-related condition. Homozygous relatives were found to have hemochromatosis-related conditions that had yet to be detected clinically. The summary of results is shown in Table 1.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Men (n=113)</th>
<th>Women (n=101)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iron overload</td>
<td>96 (85%)</td>
<td>69 (68%)</td>
</tr>
<tr>
<td>≥1 hemochromatosis-related condition*</td>
<td>43 (38%)</td>
<td>10 (10%)</td>
</tr>
</tbody>
</table>

*Homozygous relatives only
Genetic Testing for Hereditary Hemochromatosis

Policy # 00430
Original Effective Date: 10/15/2014
Current Effective Date: 10/18/2017

<table>
<thead>
<tr>
<th>Men >40 years old (n=52)</th>
<th>Women >50 years old (n=43)</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥1 hemochromatosis-related condition*</td>
<td>27 (52%)</td>
</tr>
</tbody>
</table>

* Cirrhosis, hepatic fibrosis, elevated aminotransferase values, or hemochromatotic arthropathy.

Clinical Utility

There are no studies that report direct evidence on the clinical utility of genetic testing. Thus, the clinical utility of genetic testing for HH relies on whether a strong chain of evidence exists. The chain of evidence extrapolates clinical utility in the absence of direct clinical studies that demonstrate clinical utility and relies on the established analytic and clinical validity of a genetic test. Potential clinical utility via the chain of evidence shows how a genetic test result potentially impacts the diagnostic workup, alters patient management, and may lead to improved health outcomes.

Section Summary: Clinical Utility

Individuals with a first-degree relative with HH are at risk for developing the disease themselves. When there is a known pathogenic variant in the family, genetic testing of family members can confirm the presence or absence of the variant with a high degree of certainty. Homozygous relatives of patients with hemochromatosis have conditions related to hemochromatosis that were not previously detected clinically. For asymptomatic patients who test negative, surveillance for iron overload is not indicated. For asymptomatic patients who test positive, surveillance is indicated and early initiation of treatment may potentially prevent organ damage due to iron accumulation.

TESTING ASYMPTOMATIC INDIVIDUALS (POPULATION SCREENING)

Clinical Context and Test Purpose
The purpose of genetic testing of individuals in the general population is to screen individuals without increased risk for iron overload for \(HFE \) genetic variants that might lead to abnormal iron indices and/or signs and symptoms of iron overload.

The relevant question addressed in this evidence review is: Does genetic testing for \(HFE \) in asymptomatic patients in the general population lead to improved health outcomes?

The following PICOTS were used to select literature to inform this review.

Patients
The relevant population of interest includes individuals without increased risk for iron overload.

Interventions
The relevant intervention of interest is genetic testing for \(HFE \).

Comparators
The relevant comparator of interest is standard clinical management without genetic screening.
Outcomes
The potential beneficial outcomes of primary interest are early detection of the disease to prevent disease complications of iron overload.

Potential harmful outcomes are those resulting from a false-positive or false-negative test results. False-positive test results can lead to unnecessary surveillance for iron overload and treatments (eg, phlebotomy) that may not be efficacious. False-negative test results can lead to lack of surveillance for iron overload and treatments to prevent disease progression and irreversible organ damage.

Timing
The time frame for outcome measures varies from short-term development of clinical signs of iron overload to long-term complications such as liver failure and cirrhosis.

Setting
The principal setting would be in the primary care office.

Analytic Validity
See the discussion of analytic validity in the Testing Individuals With Abnormal Iron Indices or Signs or Symptoms of Iron Overload section.

Clinical Validity
See the discussion of clinical validity in the Testing Individuals With Abnormal Iron Indices or Signs or Symptoms of Iron Overload section.

Clinical Utility
McLaren and Gordeuk (2009) conducted the Hemochromatosis and Iron Overload Screening (HEIRS) study to evaluate the prevalence, genetic and environmental determinants, and potential clinical, personal, and societal impact of hemochromatosis and iron overload in a multiethnic, primary care–based sample of 101,168 adults enrolled over a 2-year period at 4 centers in the United States and 1 in Canada. Initial screening included genotyping for the HFE C282Y and H63D alleles, measurement of serum ferritin, and calculation of transferrin saturation. The yield of HFE genotyping for identifying persons with C282Y homozygosity was low in racial/ethnic groups other than non-Hispanic whites. Overall frequency of homozygosity for the C282Y variant in non-Hispanic whites was 4.4 per 1000. There was marked heterogeneity of disease expression in C282Y homozygotes. The authors concluded that (1) future studies to discover modifier genes that affect phenotypic expression in C282Y hemochromatosis should help identify patients who are at greatest risk of developing iron overload and may benefit from continued monitoring of iron status, and (2) although genetic testing is well-accepted and associated with minimal risk of discrimination, generalized population screening in a primary care population as performed in the HEIRS study was not recommended. This study was not designed to evaluate the efficacy of general population genetic screening, but the results are consistent with minimal clinical utility of such screening.
Section Summary: Clinical Utility

Individuals who are not at increased risk for developing HH will not likely benefit from genetic testing for HFE. Direct evidence of the clinical utility of genetic testing in the general population is lacking. In contrast to first-degree relatives of individuals with hemochromatosis, where a homozygous genotype is relatively strongly associated with clinically undetected iron overload or disease-related conditions, a chain of evidence cannot be constructed to show potential clinical utility or improvements in health outcomes from screening individuals not at increased risk for HH. The HEIRS study revealed that the prevalence of C282Y homozygotes in non-Hispanic whites was 4.4 per 1000, or 0.44% in an unselected population. Given low homozygous frequency in the population and the variable penetrance of disease, long-term follow-up (eg, 5-10 years) is required to determine the true clinical sensitivity (expected to be <0.44% due to variable penetrance). Additionally, in the absence of long-term prospective studies and observational treatment data, the chain of evidence does not show that identification of HFE common variants in an unselected, normal-risk population leads to improved outcomes.

SUMMARY OF EVIDENCE

For individuals who have abnormal iron indices or clinical signs of iron overload who receive genetic testing for the HFE gene, the evidence includes retrospective and prospective observational studies. Relevant outcomes are test accuracy, test validity, and change in disease status. These studies have established high analytic validity of genetic testing. Studies have demonstrated that current genetic testing detects the large majority of HH disease, but that, among those with positive tests (HH homozygotes), penetrance for clinical disease is low. There is no direct evidence of the clinical utility of genetic testing, but, along with prior knowledge on the effectiveness of treatment for clinical iron overload, there is a strong chain of evidence that supports definitive genetic diagnosis of persons with early signs of HH. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

For individuals who are asymptomatic with a first-degree relative with HH who receive genetic testing for HFE, the evidence includes retrospective and prospective observational studies. Relevant outcomes are test accuracy, test validity, and change in disease status. These studies have established high analytic validity of genetic testing. Studies have demonstrated that current genetic testing detects the large majority of HH disease, but that among those with positive tests (HH homozygotes), penetrance for clinical disease is low. There is no direct evidence of the clinical utility of genetic testing, but, along with prior knowledge on the effectiveness of treatment for clinical iron overload, there is a strong chain of evidence that supports definitive genetic diagnosis of persons who are first-degree relatives of persons with HH. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

For individuals who are asymptomatic in the general population who are asymptomatic with no family history of hereditary hemochromatosis who receive genetic testing for HFE, the evidence includes observational studies of screening in population samples. Relevant outcomes are test accuracy, test validity, and change in disease status. These studies have established population prevalence of genetic HH, and serve as partial evidence to estimate penetrance of disease. The low prevalence of HH homozygosity in the general population and incomplete penetrance of clinical disease do not support a
Genetic Testing for Hereditary Hemochromatosis

Policy # 00430
Original Effective Date: 10/15/2014
Current Effective Date: 10/18/2017

chain of evidence for clinical utility of genetic testing in an unselected population. The evidence is insufficient to determine the effects of the technology on health outcomes.

References
7. Vujić M. Molecular basis of HFE-hemochromatosis. Front Pharmacol. 2014;5:42. PMID 24653703
Genetic Testing for Hereditary Hemochromatosis

Policy # 00430
Original Effective Date: 10/15/2014
Current Effective Date: 10/18/2017

Policy History
Original Effective Date: 10/15/2014
Current Effective Date: 10/18/2017
10/02/2014 Medical Policy Committee review
10/08/2015 Medical Policy Committee review
10/21/2015 Medical Policy Implementation Committee approval. No change to coverage.
10/06/2016 Medical Policy Committee review
10/19/2016 Medical Policy Implementation Committee approval. No change to coverage.
01/01/2017 Coding update: Removing ICD-9 Diagnosis Codes
10/05/2017 Medical Policy Committee review
10/18/2017 Medical Policy Implementation Committee approval. No change to coverage. The word mutation was replaced with variant.

Next Scheduled Review Date: 10/2018

Coding
The five character codes included in the Blue Cross Blue Shield of Louisiana Medical Policy Coverage Guidelines are obtained from Current Procedural Terminology (CPT®), copyright 2016 by the American Medical Association (AMA). CPT is developed by the AMA as a listing of descriptive terms and five character identifying codes and modifiers for reporting medical services and procedures performed by physician. The responsibility for the content of Blue Cross Blue Shield of Louisiana Medical Policy Coverage Guidelines is with Blue Cross and Blue Shield of Louisiana and no endorsement by the AMA is intended or should be implied. The AMA disclaims responsibility for any consequences or liability attributable or related to any use, nonuse or interpretation of information contained in Blue Cross Blue Shield of Louisiana Medical Policy Coverage Guidelines. Fee schedules, relative value units, conversion factors and/or related components are not assigned by the AMA, are not part of CPT, and the AMA is not recommending their use. The AMA does not directly or indirectly practice medicine or dispense medical services. The AMA assumes no liability for data contained or not contained herein. Any use of CPT outside of Blue Cross Blue Shield of Louisiana Medical Policy Coverage Guidelines should refer to the most current Current Procedural Terminology which contains the complete and most current listing of CPT codes and descriptive terms. Applicable FARS/DFARS apply.

CPT is a registered trademark of the American Medical Association.

Codes used to identify services associated with this policy may include (but may not be limited to) the following:

<table>
<thead>
<tr>
<th>Code Type</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPT</td>
<td>81256</td>
</tr>
<tr>
<td>HCPCS</td>
<td>No codes</td>
</tr>
<tr>
<td>ICD-10 Diagnosis</td>
<td>E83.10 E83.110-E83.119 E83.19 Z83.49</td>
</tr>
</tbody>
</table>
Genetic Testing for Hereditary Hemochromatosis

Policy # 00430
Original Effective Date: 10/15/2014
Current Effective Date: 10/18/2017

*Investigational – A medical treatment, procedure, drug, device, or biological product is Investigational if the effectiveness has not been clearly tested and it has not been incorporated into standard medical practice. Any determination we make that a medical treatment, procedure, drug, device, or biological product is Investigational will be based on a consideration of the following:

A. Whether the medical treatment, procedure, drug, device, or biological product can be lawfully marketed without approval of the U.S. FDA and whether such approval has been granted at the time the medical treatment, procedure, drug, device, or biological product is sought to be furnished; or

B. Whether the medical treatment, procedure, drug, device, or biological product requires further studies or clinical trials to determine its maximum tolerated dose, toxicity, safety, effectiveness, or effectiveness as compared with the standard means of treatment or diagnosis, must improve health outcomes, according to the consensus of opinion among experts as shown by reliable evidence, including:
 1. Consultation with the Blue Cross and Blue Shield Association technology assessment program (TEC) or other nonaffiliated technology evaluation center(s);
 2. Credible scientific evidence published in peer-reviewed medical literature generally recognized by the relevant medical community; or
 3. Reference to federal regulations.

**Medically Necessary (or “Medical Necessity”) - Health care services, treatment, procedures, equipment, drugs, devices, items or supplies that a Provider, exercising prudent clinical judgment, would provide to a patient for the purpose of preventing, evaluating, diagnosing or treating an illness, injury, disease or its symptoms, and that are:

A. In accordance with nationally accepted standards of medical practice;

B. Clinically appropriate, in terms of type, frequency, extent, level of care, site and duration, and considered effective for the patient's illness, injury or disease; and

C. Not primarily for the personal comfort or convenience of the patient, physician or other health care provider, and not more costly than an alternative service or sequence of services at least as likely to produce equivalent therapeutic or diagnostic results as to the diagnosis or treatment of that patient's illness, injury or disease.

For these purposes, “nationally accepted standards of medical practice” means standards that are based on credible scientific evidence published in peer-reviewed medical literature generally recognized by the relevant medical community, Physician Specialty Society recommendations and the views of Physicians practicing in relevant clinical areas and any other relevant factors.

‡ Indicated trademarks are the registered trademarks of their respective owners.

NOTICE: Medical Policies are scientific based opinions, provided solely for coverage and informational purposes. Medical Policies should not be construed to suggest that the Company recommends, advocates, requires, encourages, or discourages any particular treatment, procedure, or service, or any particular course of treatment, procedure, or service.