Hematopoietic Stem-Cell Transplantation for Miscellaneous Solid Tumors in Adults

Policy # 00059
Original Effective Date: 01/28/2002
Current Effective Date: 12/21/2016

Applies to all products administered or underwritten by Blue Cross and Blue Shield of Louisiana and its subsidiary, HMO Louisiana, Inc. (collectively referred to as the “Company”), unless otherwise provided in the applicable contract. Medical technology is constantly evolving, and we reserve the right to review and update Medical Policy periodically.

Services Are Considered Investigational
Coverage is not available for investigational medical treatments or procedures, drugs, devices or biological products.

Based on review of available data, the Company considers autologous or allogeneic hematopoietic stem cell transplant (HSCT) for miscellaneous solid tumors in adults including, but not limited to, the following malignancies to be investigative*:

- Lung cancer, any histology
- Colon cancer
- Rectal cancer
- Pancreas cancer
- Stomach cancer
- Esophageal cancer
- Gall bladder cancer
- Cancer of the bile duct
- Renal cell cancer
- Cervical cancer
- Uterine cancer
- Cancer of the fallopian tubes
- Prostate cancer
- Nasopharyngeal cancer
- Paranasal sinus cancer
- Neuroendocrine tumors
- Soft tissue sarcomas
- Thyroid tumors
- Tumors of the thymus
- Tumors of unknown primary origin
- Malignant melanoma

Background/Overview
Hematopoietic stem cell transplantation is an established treatment for certain hematologic malignancies and has been investigated for a variety of adult solid tumors. Interest continues in exploring nonmyeloablative allogeneic HSCT for a graft-versus-tumor effect of donor-derived T cells in metastatic solid tumors.

Hematopoietic Stem-Cell Transplantation
Hematopoietic stem-cell transplantation refers to a procedure in which hematopoietic stem cells are infused to restore bone marrow function in cancer patients who receive bone-marrow-toxic doses of cytotoxic drugs with or without whole body radiation therapy. Hematopoietic stem cells may be obtained from the transplant recipient (autologous hematopoietic cell transplantation [HCT]) or from a donor (allogeneic HCT). They can be harvested from bone marrow, peripheral blood, or umbilical cord blood shortly after delivery of neonates. Although cord blood is an allogeneic source, the stem cells in it are antigenically “naïve” and thus are associated with a lower incidence of rejection or graft-versus-host disease (GVHD).

Immunologic compatibility between infused stem cells and the recipient is not an issue in autologous HSCT. However, immunologic compatibility between donor and patient is a critical factor for achieving a good outcome of allogeneic HSCT. Compatibility is established by typing of human leukocyte antigens (HLA) using cellular, serologic, or molecular techniques. Human leukocyte antigens refer to the tissue type expressed at the Class I and Class II loci on chromosome 6. Depending on the disease being treated, an acceptable donor will match the patient at all or most of the HLA loci (with the exception of umbilical cord blood).

Conventional Preparative Conditioning for Hematopoietic Stem-Cell Transplantation

The conventional (“classical”) practice of allogeneic HSCT involves administration of cytotoxic agents (e.g., cyclophosphamide, busulfan) with or without total body irradiation at doses sufficient to destroy endogenous hematopoietic capability in the recipient. The beneficial treatment effect in this procedure is due to a combination of initial eradication of malignant cells and subsequent graft-versus-malignancy (GVM) effect mediated by non-self immunologic effector cells that develop after engraftment of allogeneic stem cells within the patient’s bone marrow space. While the slower GVM effect is considered to be the potentially curative component, it may be overwhelmed by extant disease without the use of pretransplant conditioning. However, intense conditioning regimens are limited to patients who are sufficiently fit medically to tolerate substantial adverse effects that include pre-engraftment opportunistic infections secondary to loss of endogenous bone marrow function and organ damage and failure caused by the cytotoxic drugs. Furthermore, in any allogeneic HSCT, immune suppressant drugs are required to minimize graft rejection and GVHD, which also increases susceptibility of the patient to opportunistic infections. The immune reactivity between donor T cells and malignant cells that is responsible for the GVM effect also leads to acute and chronic GVHD.

The success of autologous HSCT is predicated on the ability of cytotoxic chemotherapy with or without radiation to eradicate cancerous cells from the blood and bone marrow. This permits subsequent engraftment and repopulation of bone marrow space with presumably normal hematopoietic stem cells obtained from the patient prior to undergoing bone marrow ablation. As a consequence, autologous HSCT is typically performed as consolidation therapy when the patient’s disease is in complete remission (CR). Patients who undergo autologous HSCT are susceptible to chemotherapy-related toxicities and opportunistic infections prior to engraftment, but not GVHD.

Reduced-Intensity Conditioning for Allogeneic Hematopoietic Stem-Cell Transplantation

Reduced-intensity conditioning (RIC) refers to the pretransplant use of lower doses or less intense regimens of cytotoxic drugs or radiation than are used in traditional full-dose myeloablative conditioning.
Hematopoietic Stem-Cell Transplantation for Miscellaneous Solid Tumors in Adults

Policy # 00059
Original Effective Date: 01/28/2002
Current Effective Date: 12/21/2016

The goal of RIC is to reduce disease burden, but also to minimize as much as possible associated treatment-related morbidity and non-relapse mortality (NRM) in the period during which the beneficial GVM effect of allogeneic transplantation develops. Although the definition of RIC remains arbitrary, with numerous versions employed, all seek to balance the competing effects of NRM and relapse due to residual disease. Reduced-intensity conditioning regimens can be viewed as a continuum in effects, from nearly totally myeloablative, to minimally myeloablative with lymphoablation, with intensity tailored to specific diseases and patient condition. Patients who undergo RIC with allogeneic HSCT initially demonstrate donor cell engraftment and bone marrow mixed chimerism. Most will subsequently convert to full-donor chimerism, which may be supplemented with donor lymphocyte infusions to eradicate residual malignant cells. For the purposes of this evidence review, RIC will refer to all conditioning regimens intended to be nonmyeloablative, as opposed to fully myeloablative (conventional) regimens.

Hematopoietic Stem-Cell Transplantation in Solid Tumors in Adults
Hematopoietic stem-cell transplantation is an established treatment for certain hematologic malignancies. Its use in solid tumors is less well established, although it has been investigated for a variety of solid tumors. With the advent of nonmyeloablative allogeneic transplant, interest has shifted to exploring the generation of alloreactivity to metastatic solid tumors via a graft-versus-tumor effect of donor-derived T cells.

Hematopoietic stem-cell transplantation as a treatment either of breast cancer, ovarian cancer, germ cell tumors, ependymoma, or malignant glioma is addressed in separate policies. This policy collectively addresses other solid tumors of adults for which HSCT has been investigated, including lung cancer; malignant melanoma; tumors of the gastrointestinal tract (include colon, rectum, pancreas, stomach, esophagus, gallbladder, and bile duct); male and female genitourinary systems (e.g., renal cell carcinoma, cervical carcinoma, cancer of the uterus, fallopian tubes, and prostate gland); tumors of the head and neck; soft tissue sarcoma; thyroid tumors; tumors of the thymus; and tumors of unknown primary origin.

Rationale/Source
This policy was initially based on a 1995 Technology Evaluation Center (TEC) Assessment that focused on the malignancies listed in the Policy section. The Assessment offered the following conclusions:

- While 125 articles were identified that reported on the results of HSCT in a variety of solid tumors, only 17 included survival data from groups of patients with the same cancer. These studies reported on 4 indications: advanced small-cell lung cancer, advanced colorectal cancer, malignant melanomas, and inoperable gastric cancer.
- The evidence did not permit conclusions as to the effect of HSCT on patient survival.

A 1999 TEC Assessment evaluated the use of allogeneic HSCT as a salvage therapy after a failed prior autologous HSCT for solid tumors. Data were inadequate to permit conclusions.

Autologous Hematopoietic Stem-Cell Transplantation in Solid Tumors of Adults
Data on the use of autologous HSCT for the solid tumors of adults addressed in this policy consist primarily of small series.
Hematopoietic Stem-Cell Transplantation for Miscellaneous Solid Tumors in Adults

Policy # 00059
Original Effective Date: 01/28/2002
Current Effective Date: 12/21/2016

Adult Soft Tissue Sarcomas
The prognosis of patients with unresectable or metastatic soft tissue sarcomas is poor, with a median survival of approximately 1 year and less than a 10% 5-year survival. A variety of single-agent and combination regimens are used for treatment, with targeted therapies available for some subtypes. Based on initial observations that patients who achieved complete remission (CR) had longer survival, several phase 1 and 2 trials using autologous HSCT were conducted in the 1990s in an attempt to improve outcomes. These trials were composed of small numbers of patients (range, 2-55 patients), yielding overall response rates (ORRs) from 20% to 65%, with CR ranging from 10% to 43%. The longest reported 5-year progression-free survival (PFS) rate was 21%, and 5-year overall survival (OS) was 32%. One study of 21 patients with soft tissue sarcoma showed a PFS and OS benefit only in patients with no evidence of disease prior to HSCT. In another phase 2 study, 21 of 55 (38%) patients responded to doxorubicin-based induction chemotherapy, but estimated OS was not statistically different between those who received an autologous HSCT and those who did not (14% vs 3%; p=0.003).

In 2014, a Cochrane systematic review evaluated the use of autologous HSCT following high-dose chemotherapy for nonrhabdomyosarcoma soft tissue sarcomas. The authors included 62 studies reporting on 294 transplanted patients, with a variety of soft tissue sarcomas. One randomized controlled trial (RCT) including 83 patients was identified; the remainder were single-arm studies. In the RCT, OS did not differ statistically significantly between autologous HSCT following high-dose chemotherapy compared with standard-dose chemotherapy (hazard ratio [HR], 1.26; 95% confidence interval [CI], 0.70 to 2.29; p=0.44), and the point estimate for survival at 3 years was 32.7% compared with 49.4%. The pooled treatment-related mortality rate across the single-arm studies was 15 (5.1%) of 294.

A small number of studies not included in the Cochrane review have described outcomes after HSCT for soft tissue sarcoma. Kasper et al reported the results of a prospective, single-institution phase 2 study that enrolled 34 patients with advanced and/or metastatic soft tissue sarcoma. After 4 courses of chemotherapy, patients with at least a partial response underwent high-dose chemotherapy and autologous HSCT (n=9). All other patients continued chemotherapy for 2 more cycles. The median PFS for patients treated with HSCT was 11.6 months (range, 8-15 months) versus 5.6 months for patients treated with standard chemotherapy (p=0.047) and median OS for the 2 groups was 23.7 months (range, 12-34 months) versus 10.8 months (range 0-39 months) (p=0.027), respectively.

Hartmann et al reported results from a phase 2 study of high-dose chemotherapy with ifosfamide, carboplatin, and etoposide followed by peripheral blood stem cell transplantation in patients with grade 2 or 3 histologically proven soft tissue sarcoma who were considered unresectable or marginally resectable. After a median follow-up period of 50 months (range, 26-120 months) in surviving patients, the median PFS of all patients was 21 months (range, 1-94 months) and median OS was 37 months (range, 3-120 months), corresponding to 5-year PFS and OS rates of 39% and 48%, respectively.

One case report of the use of autologous HSCT for treatment of an adult histiocytic sarcoma was identified, in which the patient was alive with no evidence of disease 30 months posttreatment.
Hematopoietic Stem-Cell Transplantation for Miscellaneous Solid Tumors in Adults

Policy # 00059
Original Effective Date: 01/28/2002
Current Effective Date: 12/21/2016

Overall, one RCT and several small phase 2 studies have reported outcomes after autologous HSCT in adult patients with soft tissue sarcoma. Although one small phase 2 study reported longer survival for patients treated with HSCT than standard chemotherapy, the available RCT did not show a survival benefit with HSCT. The evidence is insufficient to determine that autologous HSCT improves outcomes in adults with soft tissue sarcoma.

Small-Cell Lung Carcinoma
The interest in treating small-cell lung carcinoma (SCLC) with HSCT stems from the extremely high chemosensitivity and poor prognosis of this tumor type. A Phase III trial of 318 patients with SCLC randomly assigned patients to standard chemotherapy or HSCT. No statistically significant difference in response rates was seen between the two groups (80% response rate in the standard arm vs. 88% in the HSCT group [difference: 8%, 95% CI: -1% to 17%; p = 0.09]). There was no statistically significant difference in OS between the two groups, with a median OS of 13.9 months in the standard arm (95% CI: 12.1 to 15.7 months) versus 14.4 months in the HSCT arm (95% CI: 13.1 to 15.4); p = 0.76. One smaller, randomized study and several single-arm studies of HSCT and autologous HSCT for SCLC are summarized in a review article. Overall, the majority of the data from these studies, including the randomized study, showed no increased OS with autologous HSCT.

Jiang and colleagues performed a meta-analysis of the medical literature through October 2008 of English language studies using intensified chemotherapy with autologous hematopoietic progenitors to treat SCLC. The meta-analysis consisted of five randomized, controlled trials (RCTS; 3 were Phase III trials and 2 were Phase II), for a total of 641 patients. They found no significant increase in the odds ratio for response rate with autologous transplant versus control chemotherapy (odds ratio [OR]: 1.29; 95% CI: 0.87–1.93; p = 0.206). No statistically significant increase in OS was seen among the autologous transplant patients compared to control regimens (HR: 0.94; 95% CI: 0.80–1.10; p = 0.432). The authors concluded that current evidence does not support the use of intensified chemotherapy and autologous HSCT for treating SCLC.

Miscellaneous
Uncontrolled pilot studies of HSCT for patients with refractory urothelial carcinoma and recurrent or advanced nasopharyngeal carcinoma did not demonstrate adequate evidence of improved outcomes to alter previous conclusions. In a small series (N=8) of bilateral retinoblastoma survivors with secondary osteosarcoma, 2 patients (of 7 treated with multimodal chemotherapy) received high-dose chemotherapy with autologous peripheral blood stem cell support. The 2 HSCT-treated patients were alive with no evidence of disease at 33.4 and 56.4 months of follow-up.

Allogeneic Hematopoietic Stem-Cell Transplantation in Solid Tumors of Adults
Single-case reports and small series of patients with various types of solid tumors have been treated with allogeneic HSCT, including some of the tumor types addressed in this policy.

Renal Cell Carcinoma
Metastatic renal cell carcinoma (RCC) has an extremely poor prognosis, with a median survival of less than 1 year and a 5-year survival of less than 5%. RCC is relatively resistant to chemotherapy but is susceptible
to immune therapy, and interleukin-2 and/or interferon-α have induced responses and long-term PFS in 4% to 15% of patients. In addition, 7 targeted therapies are approved by the U.S. Food and Drug Administration (FDA) for treatment of advanced RCC: sunitinib, sorafenib, pazopanib, axitinib, temsirolimus, everolimus, and bevacizumab. Based on the susceptibility of RCC to immune therapies, the immune-based strategy of a graft-versus-tumor effect possible with an allogeneic transplant has led to an interest in its use in RCC. In 2000, Childs et al published the first series of patients with RCC treated with nonmyeloablative allo-HSCT. The investigators showed regression of the tumor in 10 of 19 (53%) patients with cytokine-refractory, metastatic RCC who received a human leukocyte antigen (HLA)-identical sibling allo-HSCT. Three patients had a CR and remained in remission 16, 25, and 27 months after transplant. Four of 7 patients with a partial response were alive without disease progression 9 to 19 months after transplantation. Other pilot trials have demonstrated the graft-versus-tumor effect of allogeneic transplant in metastatic RCC, but most have not shown as high a response rate as the Childs study. ORRs in these pilot trials have been approximately 25%, with CR rates of approximately 8%. Prospective, randomized trials are needed to assess the net impact of this technique on the survival of patients with cytokine-refractory RCC.

Bregni et al assessed the long-term benefit of allografting in 25 patients with cytokine-refractory metastatic RCC who received an RIC allograft from a sibling who is HLA identical. All patients received the same conditioning regimens. Response to allograft was available in 24 patients, with a CR in 1 patient and partial response in 4 patients. Twelve patients had minor response or stable disease, and 7 had progressive disease. Overall response rate (complete plus partial) was 20%. Six patients died because of transplant-related mortality. Median survival was 336 days (12-2332+). One-year OS was 48% (95% CI, 28 to 68), and 5-year OS was 20% (95% CI, 4 to 36). The authors concluded that allografting is able to induce long-term disease control in a small fraction of cytokine-resistant patients with RCC but that with the availability of novel targeted therapies for RCC, future treatment strategies should consider the incorporation of these therapies into the transplant regimen.

Colorectal Carcinoma

Aglietta et al reported their experience with 39 patients with metastatic colorectal cancer who underwent RIC-allogeneic HSCT between 1999 and 2004 at 9 European Group for Blood and Marrow Transplantation (EBMT) centers. Patients were treated with 1 of 5 different RIC regimens. End points that were assessed were achievement of mixed chimerism, incidence GVHD, treatment-related mortality and toxicities, OS, and time to treatment failure (in patients who responded to the therapy). Patient population characteristics were heterogeneous; pretransplant disease status was partial response in 2 patients, stable disease in 6 patients, and progressive disease in 31. Thirty-eight patients (97%) had been previously treated, some with only chemotherapy and others with surgery and/or chemotherapy. After transplant, tumor responses were complete and partial in 2% and 18% of patients, respectively, and 26% of patients had stable disease, for overall disease control in 46% of patients. Transplant-related mortality was 10%. Median overall follow-up was 202 days (range, 6-1020 days), after which time 33 patients had died and 6 were still alive. Tumor progression was the cause of death in 74% of patients. A comparison of OS of patients was performed after stratifying by some potential prognostic factors. Achievement of response after transplantation was associated with a difference in OS, with the 18 patients who had a response having a median OS of approximately 400 days versus approximately 120 days for those who had no response (p<0.001). The authors concluded that the HSCT approach should probably be reserved for patients with a partial response.
or stable disease after second-line therapy for metastatic colorectal cancer and that second-generation clinical trials in these patients are warranted.

Pancreatic Cancer
Kanda and colleagues reported on the efficacy of RIC allogeneic HSCT against advanced pancreatic cancer in 22 patients from three transplantation centers in Japan. The RIC regimens differed among the centers, and the patient population was fairly heterogeneous, with 15 patients having metastatic disease and 7 locally advanced disease. All but one patient received chemotherapy of various combinations before transplant, and ten patients received local radiation. After HSCT, one patient achieved complete response, two patients had partial response, two had minor response, and eight had stable disease, with an overall response rate of 23%. Median survival was 139 days, and the major cause of death was tumor progression (median duration of survival in advanced pancreatic cancer in the nontransplant setting is less than six months, even in patients treated with gemcitabine). Only one patient survived longer than one year after transplantation. The authors concluded that a tumor response was observed in one fourth of patients with advanced pancreatic cancer who underwent HSCT and that the response was not durable. However, they felt that their observation of a relationship between longer survival and the infusion of a higher number of CD34-positive cells or the development of chronic GVHD warrant future studies to enhance the immunologic effect against pancreatic cancer.

Abe and colleagues reported the outcomes for five patients with chemotherapy-resistant, unresectable pancreatic adenocarcinoma who received a nonmyeloablative allogeneic peripheral blood HSCT. The conditioning regimen consisted of fludarabine and low-dose total-body irradiation. The median patient age was 54 years (range: 44–62 years). All patients had advanced disease, either with metastases or peritonitis, and had received at least one course of chemotherapy including gemcitabine. After HSCT, tumor response was only observed in two patients—one had complete disappearance of the primary tumor and one had a 20% reduction in tumor size; the remaining patients had progressive disease (n = 2) or stable disease (n = 1).Four patients died of progressive disease, ranging from post-transplant day 28 to day 209 (median: 96 days). One patient died at day 57 secondary to rupture of the common bile duct from rapid tumor regression. The authors concluded that their study showed a graft-versus-tumor effect but that in order to obtain durable responses, an improved conditioning regimen and new strategies to control tumor growth after nonmyeloablative allogeneic HSCT are needed.

Nasopharyngeal Carcinoma
Toh and colleagues reported the outcomes of a Phase 2 trial of 21 patients with pretreated metastatic nasopharyngeal carcinoma. Median patient age was 48 years (range: 34-57 years), and patients had received a median of two previous chemotherapy regimens (range: 1-8). All patients had extensive metastases. Patients underwent a nonmyeloablative allogeneic HSCT with sibling allografts. Seven patients (33%) showed a partial response and three (14%) achieved stable disease. Four patients were alive at two years, and three showed prolonged disease control of 344, 525, and 550 days. After a median follow-up of 209 days (range: 4-1,147 days), the median PFS was 100 days (95% CI: 66-128 days), and median OS was 209 days (95% CI: 128-236 days). One and 2-year OS rates were 29 and 19%, respectively, comparable to the median 7-14 months OS for metastatic nasopharyngeal patients in the literature treated with salvage chemotherapy without HSCT.
Hematopoietic Stem-Cell Transplantation for Miscellaneous Solid Tumors in Adults

Policy # 00059
Original Effective Date: 01/28/2002
Current Effective Date: 12/21/2016

Ongoing and Unpublished Clinical Trials
Some currently unpublished trials that might influence this review are listed in Table 1.

Table 1. Summary of Key Trials

<table>
<thead>
<tr>
<th>NCT No.</th>
<th>Trial Name</th>
<th>Planned Enrollment</th>
<th>Completion Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unpublished</td>
<td>Phase III Randomized Trial of Sequential High-Dose Chemotherapy Versus Standard Chemotherapy for the Treatment of Small Cell Lung Cancer</td>
<td>430</td>
<td>Status unknown</td>
</tr>
</tbody>
</table>

NCT: national clinical trial.

Summary
The evidence for HSCT in individuals who have adult soft tissue sarcomas includes 2 TEC Assessments, 1 RCT, and a number of phase 2 single-arm studies, a number of which have been summarized in a Cochrane systematic review. Relevant outcomes are overall survival, disease-specific survival, and treatment-related morbidity and mortality. The 1995 and 1999 TEC Assessments focusing on HSCT as primary and salvage therapy for a variety of solid tumors found that the available evidence did not permit conclusions about the effect of HSCT on patient survival. Although 1 small phase 2 study reported longer survival for patients treated with HSCT than standard chemotherapy, the available RCT did not show a survival benefit with HSCT. The evidence is insufficient to determine that autologous HSCT improves outcomes in adults with soft tissue sarcoma.

The evidence for HSCT in individuals who have SCLC includes 2 TEC Assessments, several RCTs, and systematic reviews of these studies. Relevant outcomes are overall survival, disease-specific survival, and treatment-related morbidity and mortality. The 1995 and 1999 TEC Assessments focusing on HSCT as primary and salvage therapy for a variety of solid tumors found that the available evidence did not permit conclusions about the effect of HSCT on patient survival. Studies published since the TEC Assessments have not reported increased overall survival for patients with SCLC treated with HSCT. The currently available evidence does not support the use of HSCT for SCLC.

The evidence for HSCT in individuals who have renal cell carcinoma, colorectal cancer, pancreatic cancer, or nasopharyngeal cancer includes a TEC Assessment and small single-arm series. Relevant outcomes are overall survival, disease-specific survival, and treatment-related morbidity and mortality. The 1995 and 1999 TEC Assessments focusing on HSCT as primary and salvage therapy for a variety of solid tumors found that the available evidence did not permit conclusions about the effect of HSCT on patient survival. Since publication of the TEC Assessments, the evidence for HSCT in cases of adult soft tissue sarcomas, renal cell carcinoma, colorectal cancer, pancreatic cancer, and nasopharyngeal cancer has been limited to small case series, which are insufficient to demonstrate improved outcomes with autologous or allogeneic HSCT.
Hematopoietic Stem-Cell Transplantation for Miscellaneous Solid Tumors in Adults

Policy #: 00059
Original Effective Date: 01/28/2002
Current Effective Date: 12/21/2016

Practice Guidelines and Position Statements
National Comprehensive Cancer Network
As of December 2015, National Comprehensive Cancer Network guidelines on the tumors addressed in this policy do not discuss HSCT as a treatment option.

American Society for Blood and Marrow Transplantation
As of December 2015, the American Society for Blood and Marrow Transplantation has not issued guidelines, policy statements, or evidence-based reviews on the use of HSCT for solid tumors.

References
4. (TEC) BCaBSATEC. High-Dose Chemotherapy with Autologous Stem-Cell Support for Miscellaneous Solid Tumors in Adults. TEC Assessments 1995. 1995:10(Table 4). PMID
5. (TEC) BCaBSATEC. Salvage High-Dose Chemotherapy with Allogeneic Stem Cell Support for Relapse Following High-Dose Chemotherapy with Autologous Stem Cell Support for Non-lymphoid Solid Tumors. TEC Assessments 1999. 1999:14(Table 11). PMID

©2016 Blue Cross and Blue Shield of Louisiana
An independent licensee of the Blue Cross and Blue Shield Association
No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without permission from Blue Cross and Blue Shield of Louisiana.
Hematopoietic Stem-Cell Transplantation for Miscellaneous Solid Tumors in Adults

Policy # 00059
Original Effective Date: 01/28/2002
Current Effective Date: 12/21/2016

Policy History
Original Effective Date: 01/28/2002
Current Effective Date: 12/21/2016

12/06/2001 Medical Policy Committee review
01/28/2002 Managed Care Advisory Council approval
03/31/2004 Medical Director review
05/07/2004 Medical Director review
05/18/2004 Medical Policy Committee review. Format revision. High-Dose Chemotherapy and Hematopoietic Stem Cell Support for Miscellaneous Solid Tumors in Adults policy developed separately from current HDC with Hematopoietic Stem Cell Support policy. No substance change to policy.
06/28/2004 Managed Care Advisory Council approval
07/12/2006 Medical Director review
07/19/2006 Medical Policy Committee approval. Format revision including addition of FDA and or other governmental regulatory approval and rationale/source. Coverage eligibility is unchanged.
06/04/2008 Medical Director review
06/18/2008 Medical Policy Committee approval. Coverage eligibility is unchanged.
06/04/2009 Medical Director review
06/17/2009 Medical Policy Committee approval. Changed title from “High-Dose Chemotherapy and Hematopoietic Stem Cell Support for Miscellaneous Solid Tumors in Adults” to “High-Dose Chemotherapy and Hematopoietic Stem Cell Transplantation for Miscellaneous Solid Tumors in Adults.” Coverage eligibility is unchanged.
06/03/2010 Medical Policy Committee review
06/16/2010 Medical Policy Implementation Committee approval. Changed title from “High-Dose Chemotherapy and Hematopoietic Stem Cell Transplantation for Miscellaneous Solid Tumors in Adults.” to “Hematopoietic Stem Cell Transplantation for Miscellaneous Solid Tumors in Adults.” Changed the wording of the investigational statement from, “high-dose chemotherapy (HDC) with autologous or
Hematopoietic Stem-Cell Transplantation for Miscellaneous Solid Tumors in Adults

Policy # 00059
Original Effective Date: 01/28/2002
Current Effective Date: 12/21/2016

allogeneic stem cell support (SCS) for miscellaneous solid tumors” to “autologous or allogeneic stem cell transplant (SCT) for miscellaneous solid tumors.” Coverage eligibility unchanged.

06/02/2011 Medical Policy Committee review
06/14/2012 Medical Policy Committee review
06/20/2012 Medical Policy Implementation Committee approval. Coverage eligibility unchanged.
03/04/2013 Coding updated
08/01/2013 Medical Policy Committee review
08/21/2013 Medical Policy Implementation Committee approval. Coverage eligibility unchanged.
12/04/2014 Medical Policy Committee review
08/03/2015 Coding update: ICD10 Diagnosis code section added; ICD9 Procedure code section removed.
12/03/2015 Medical Policy Committee review
12/16/2015 Medical Policy Implementation Committee approval. Coverage eligibility unchanged.
12/01/2016 Medical Policy Committee review
01/01/2017 Coding update: Removing ICD-9 Diagnosis Codes

Next Scheduled Review Date: 12/2017

Coding
The five character codes included in the Blue Cross Blue Shield of Louisiana Medical Policy Coverage Guidelines are obtained from Current Procedural Terminology (CPT®), copyright 2015 by the American Medical Association (AMA). CPT is developed by the AMA as a listing of descriptive terms and five character identifying codes and modifiers for reporting medical services and procedures performed by physicians.

The responsibility for the content of Blue Cross Blue Shield of Louisiana Medical Policy Coverage Guidelines is with Blue Cross and Blue Shield of Louisiana and no endorsement by the AMA is intended or should be implied. The AMA disclaims responsibility for any consequences or liability attributable or related to any use, nonuse or interpretation of information contained in Blue Cross Blue Shield of Louisiana Medical Policy Coverage Guidelines. Fee schedules, relative value units, conversion factors and/or related components are not assigned by the AMA, are not part of CPT, and the AMA is not recommending their use. The AMA does not directly or indirectly practice medicine or dispense medical services. The AMA assumes no liability for data contained or not contained herein. Any use of CPT outside of Blue Cross Blue Shield of Louisiana Medical Policy Coverage Guidelines should refer to the most current Current Procedural Terminology which contains the complete and most current listing of CPT codes and descriptive terms. Applicable FARS/DFARS apply.

CPT is a registered trademark of the American Medical Association.

Codes used to identify services associated with this policy may include (but may not be limited to) the following:

<table>
<thead>
<tr>
<th>Code Type</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPT</td>
<td>38204, 38205, 38206, 38207, 38208, 38209, 38210, 38211, 38212, 38213, 38214, 38215, 38230, 38232, 38240, 38241, 38242, 38243</td>
</tr>
<tr>
<td>HCPCS</td>
<td>S2140, S2142, S2150</td>
</tr>
<tr>
<td>ICD-10 Diagnosis</td>
<td>All related diagnoses</td>
</tr>
</tbody>
</table>
Hematopoietic Stem-Cell Transplantation for Miscellaneous Solid Tumors in Adults

Policy # 00059
 Original Effective Date: 01/28/2002
 Current Effective Date: 12/21/2016

*Investigational – A medical treatment, procedure, drug, device, or biological product is Investigational if the effectiveness has not been clearly tested and it has not been incorporated into standard medical practice. Any determination we make that a medical treatment, procedure, drug, device, or biological product is Investigational will be based on a consideration of the following:

A. Whether the medical treatment, procedure, drug, device, or biological product can be lawfully marketed without approval of the U.S. Food and Drug Administration (FDA) and whether such approval has been granted at the time the medical treatment, procedure, drug, device, or biological product is sought to be furnished; or

B. Whether the medical treatment, procedure, drug, device, or biological product requires further studies or clinical trials to determine its maximum tolerated dose, toxicity, safety, effectiveness, or effectiveness as compared with the standard means of treatment or diagnosis, must improve health outcomes, according to the consensus of opinion among experts as shown by reliable evidence, including:
 1. Consultation with the Blue Cross and Blue Shield Association technology assessment program (TEC) or other nonaffiliated technology evaluation center(s);
 2. Credible scientific evidence published in peer-reviewed medical literature generally recognized by the relevant medical community; or
 3. Reference to federal regulations.

‡ Indicated trademarks are the registered trademarks of their respective owners.

NOTICE: Medical Policies are scientific based opinions, provided solely for coverage and informational purposes. Medical Policies should not be construed to suggest that the Company recommends, advocates, requires, encourages, or discourages any particular treatment, procedure, or service, or any particular course of treatment, procedure, or service.