PathFinder TG® Molecular Testing

Policy # 00334
Original Effective Date: 01/09/2013
Current Effective Date: 01/18/2017

Applies to all products administered or underwritten by Blue Cross and Blue Shield of Louisiana and its subsidiary, HMO Louisiana, Inc. (collectively referred to as the “Company”), unless otherwise provided in the applicable contract. Medical technology is constantly evolving, and we reserve the right to review and update Medical Policy periodically.

Services Are Considered Investigational
Coverage is not available for investigational medical treatments or procedures, drugs, devices or biological products.

Based on review of available data, the Company considers molecular testing using the PathFinderTG® system for all indications including the evaluation of pancreatic cyst fluid, and Barrett esophagus to be investigational.*

Background/Overview
Topographic genotyping (TG), also called molecular anatomic pathology, integrates microscopic analysis (anatomic pathology) with molecular tissue analysis. Under microscopic examination of tissue and other specimens, areas of interest may be identified and microdissected to increase tumor cell yield for subsequent molecular analysis. TG may permit pathologic diagnosis when first-line analyses are inconclusive.

RedPath Integrated Pathology has patented a proprietary platform, called PathFinderTG, to provide mutational analyses of patient specimens. The patented technology permits analysis of tissue specimens of any size, “including minute needle biopsy specimens,” and any age, “including those stored in paraffin for over 30 years.” Interpace currently describes in detail 1 PathFinderTG test called PancraGEN™ on its website and describes another PathFinder test called BarreGEN™ as “in the pipeline” (listed and briefly described in Table 1). As stated on the company website, PancraGEN integrates molecular analyses with first-line results (when these are inconclusive) and pathologist interpretation. The manufacturer calls this technique integrated molecular pathology. Test performance information is not provided on the website.

Table 1. PathFinderTG Tests

<table>
<thead>
<tr>
<th>Test</th>
<th>Description</th>
<th>Specimen Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>PathFinderTG Pancreas</td>
<td>Uses loss of heterozygosity markers, oncogene mutations, and DNA content abnormalities to stratify patients according to their risk of progression to cancer</td>
<td>Pancreatobiliary fluid/ERCP brush, pancreatic masses, or pancreatic tissue</td>
</tr>
<tr>
<td>(now called PancraGEN)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PathFinderTG Barrett</td>
<td>Measures the presence and extent of genomic instability and integrates those results with histology</td>
<td>Esophageal tissue</td>
</tr>
<tr>
<td>(now called BarreGEN)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ERCP: endoscopic retrograde cholangiopancreatography.

Management of Mucinous Neoplasms of the Pancreas
True pancreatic cysts are fluid-filled, cell-lined structures, which are most commonly mucinous cysts (intraductal papillary mucinous neoplasm [IPMN] and mucinous cystic neoplasm [MCN]), which are associated with future development of pancreatic cancers. Although mucinous neoplasms associated with cysts may cause symptoms (eg, pain, pancreatitis), an important reason that such cysts are followed is the
risk of malignancy, which is estimated to range from 0.01% at the time of diagnosis to 15% in resected lesions.

There is no single standardized approach to evaluating and managing pancreatic cysts. Given the rare occurrence but poor prognosis of pancreatic cancer, there is a need to balance potential early detection of malignancies while avoiding unnecessary surgical resection of cysts. Several guidelines address the management of pancreatic cysts, but high-quality evidence to support these guidelines is not generally available. Although recommendations vary, first-line evaluation usually includes examination of cyt cytopathologic or radiographic findings and cyst fluid carcinoembryonic antigen (CEA). In 2012, an international consensus panel published statements for the management of IPMN and MCN of the pancreas. These statements are referred to as the Fukouka Consensus Guidelines and were based on a symposium held in Japan in 2010 and updated a 2006 publication (Sendai Consensus Guidelines) by this same group. The panel recommended surgical resection for all surgically fit patients with main duct IPMN or MCN. For branch duct IPMN, surgically fit patients with cytology suspicious or positive for malignancy are recommended for surgical resection, but patients without “high-risk stigmata” or “worrisome features” may be observed with surveillance. “High-risk stigmata” are: obstructive jaundice in proximal lesions (head of the pancreas); presence of an enhancing solid component within the cyst; or 10 mm or greater dilation of the main pancreatic duct. “Worrisome features” are: pancreatitis; lymphadenopathy; cyst size 3 cm or greater; thickened or enhancing cyst walls on imaging; 5 to 10 mm dilation of the main pancreatic duct; or abrupt change in pancreatic duct caliber with distal atrophy of the pancreas.

In 2015, the American Gastroenterological Association (AGA) published a guideline on the evaluation and management of pancreatic cysts; it recommends patients undergo further evaluation with endoscopic ultrasound-guided fine-needle aspiration (EUS-FNA) only if the cyst has 2 or more worrisome features (size ≥3 cm, a solid component, a dilated main pancreatic duct). The guideline recommends that patients with a solid component, dilated pancreatic duct and/or “concerning features” on EUS-FNA should undergo surgery.

Management of Barrett Esophagus

Barrett esophagus refers to the replacement of normal esophageal epithelial layer with metaplastic columnar cells in response to chronic acid exposure from gastroesophageal reflux disease (GERD). The metaplastic columnar epithelium is a precursor to esophageal adenocarcinoma (EAC). These tumors frequently spread before symptoms are present so detection at an early stage might be beneficial. Surveillance for EAC is recommended for those diagnosed with Barrett esophagus. However, there are few data to guide recommendations about management and surveillance, and many issues are controversial. In 2015 guidelines from the American College of Gastroenterology (ACG) and a consensus statement from an international group of experts (Benign Barrett’s and Cancer Taskforce [BOB CAT]) regarding management of Barrett esophagus were published. ACG recommendations for surveillance are stratified by presence of dysplasia. When no dysplasia is detected, ACG reports the estimated risk of progression to cancer for patients ranges from 0.2% to 0.5% per year and ACG recommends endoscopic surveillance every 3 to 5 years. For low-grade dysplasia, the estimated risk of progression is about 0.7% per year and ACG recommends endoscopic therapy or surveillance every 12 months. For high-grade dysplasia, the estimated risk of progression is about 7% per year and ACG recommends endoscopic therapy. The BOB CAT
consensus group did not endorse routine surveillance for people with no dysplasia and was unable to agree on surveillance intervals for low-grade dysplasia.

FDA or Other Governmental Regulatory Approval

U.S. Food and Drug Administration (FDA)

Clinical laboratories may develop and validate tests in-house and market them as a laboratory service; laboratory-developed tests (LDTs) must meet the general regulatory standards of the Clinical Laboratory Improvement Amendments (CLIA). Patented diagnostic tests (eg, PancraGEN) are available only through Interpace Diagnostics (Pittsburgh, PA and New Haven, CT; formerly RedPath Integrated Pathology) under the auspices of CLIA. Laboratories that offer LDTs must be licensed by CLIA for high-complexity testing. To date, the FDA has chosen not to require any regulatory review of this test.

Centers for Medicare and Medicaid Services (CMS)

There is no national coverage determination (NCD). In the absence of an NCD, coverage decisions are left to the discretion of local Medicare carriers.

Rationale/Source

This policy has been updated annually with literature search of the MEDLINE database. The most recent update with literature review covered the period through June 14, 2016.

PathFinderTG (Interpace Diagnostics) mutational profiles are intended to inform complex diagnostic dilemmas in patients who are at risk of cancer. The manufacturer’s website states specifically that the PancraGEN technology is “intended to be an adjunct to first line testing” and suggests that the test is useful in assessing who will benefit most from surveillance and or surgery.

At present, Interpace Diagnostics offers tests using its technology to evaluate patients with pancreatic cysts and Barrett esophagus, which are the focus of the current review.

Molecular tests using the RedPathTG platform are best evaluated within the framework of a diagnostic or prognostic test, because such frameworks provide diagnostic and prognostic information that assists in treatment decisions. Assessment of a diagnostic or prognostic tool typically focuses on 3 categories of evidence: (1) analytic validity; (2) clinical validity (ie, statistically significant association between the test result and health outcomes); and (3) clinical utility (ie, demonstration that use of the diagnostic or prognostic information clinically can improve health outcomes compared with patient management without use of the tool). Because the test is an adjunct to the usual diagnostic workup, it is important to evaluate whether the test provides incremental information above the standard workup to determine if the test has utility in clinical practice.

Pancreatic Cysts

Analytic Validity

No studies describing the technical performance or analytic validity of PancraGEN were found. The laboratory that performs the analyses for PancraGEN is certified under the CLIA.
PathFinder TG® Molecular Testing

Policy # 00334
Original Effective Date: 01/09/2013
Current Effective Date: 01/18/2017

Clinical Validity
The diagnosis of cystic pancreatic lesions is usually performed by endoscopic, ultrasound-guided fine-needle aspiration sampling of the fluid and cyst wall for cytologic examination and analysis. Cytologic examination of these lesions can be difficult or indeterminate due to low cellularity, cellular degeneration, procedural difficulties, etc. Ancillary tests (eg, amylase, lipase, CEA levels) often are performed on cyst fluid to aid in diagnosis and prognosis, but results still may be equivocal. Information provided by additional testing modalities would, therefore, be potentially useful. The clinical purpose of PancraGEN is to allow patients with low-risk cysts to avoid unnecessary surgery or to more accurately select patients with malignant lesions for surgery. PancraGEN would likely be used in conjunction with clinical and radiologic characteristics, along with cyst fluid analysis; therefore, one would expect an incremental benefit to using the test.

As shown in Table 1, the PathFinderTG Pancreas test (now called PancraGEN) combines measures of loss of heterozygosity (LOH) markers, oncogene mutations, and DNA content abnormalities to stratify patients according to their risk of progression to cancer. According to a 2015 publication of results from a registry established with support from the manufacturer, the current diagnostic algorithm is as follows in Table 2.

Table 2. Diagnostic Algorithm for PancraGEN

<table>
<thead>
<tr>
<th>Diagnostic Category</th>
<th>Molecular Criteria</th>
<th>Coexisting Concerning Clinical Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benign</td>
<td>DNA lacks molecular criteria</td>
<td>Not considered for this diagnosis</td>
</tr>
<tr>
<td>Statistically indolent</td>
<td>DNA meets 1 molecular criterion</td>
<td>None</td>
</tr>
<tr>
<td>Statistically higher risk</td>
<td>DNA meets 1 molecular criterion</td>
<td>1 or more</td>
</tr>
<tr>
<td>Aggressive</td>
<td>DNA meets at least 2 molecular criteria</td>
<td>Not considered for this diagnosis</td>
</tr>
</tbody>
</table>

a Molecular criteria: (1) a single high-clonality mutation, (2) elevated level of high-quality DNA, (3) multiple low-clonality mutations; (4) a single low-clonality oncogene mutation.

b Includes any of the following: cyst size >3 cm, growth rate >3 mm/y, duct dilation >1 cm, carcinoembryonic antigen level >1000 ng/mL, cytologic evidence of high-grade dysplasia.

Several studies have reported on the diagnostic and prognostic characteristics of individual molecular components of this test (eg, KRAS mutation or LOH markers) with mixed results. Gillis et al (2015) in Ireland conducted a systematic review of the literature on molecular analysis including assessment for KRAS mutations, DNA quantification, and LOH in the diagnosis of pancreatic cystic lesions compared to surgical pathology as the reference standard. They included 9 studies that reported performance characteristics for KRAS mutations. The sensitivities of selected studies ranged from 0.12 to 0.75, with a pooled estimate of 0.39 (95% confidence interval [CI], 0.28 to 0.51). The specificities ranged from 0.67 to 1.00 with a pooled estimate of 0.95 (95% CI, 0.83 to 0.99) Evidence for LOH and DNA quantification was insufficient to form conclusions.

For the evaluation of clinical validity of the PancraGEN test (including the algorithm), studies that meet the following eligibility criteria were considered:

- Reported on the accuracy of the patented PathFinder Pancreas or PancraGEN technology for classifying patients into prognostic categories for malignancy
- Included a suitable reference standard (long-term follow-up for malignancy; histopathology from surgically resected lesions)
Several studies were excluded from the evaluation of the clinical validity of the PancraGEN test because they evaluated components of the test separately for the malignancy outcome, did not include information needed to calculate performance characteristics for the malignancy outcome, did not describe how the reference standard diagnoses was established, did not use a suitable reference standard, did not adequately describe the patient characteristics, or patient selection criteria. The following paragraphs describe the included studies which consist of 1 systematic review and 3 retrospective studies.

In 2010, a systematic review of LOH-based topographic genotyping with PathFinderTG was prepared for the Agency for Healthcare Research and Quality technology assessment program. Key questions addressed published evidence on analytic test performance, diagnostic ability, and clinical validity of the test, and what evidence compared the PathFinderTG test with conventional pathology. The review summarized 3 publications relating to diagnostic ability and clinical validity for pancreatic and biliary tree tumors, but did not perform meta-analyses of performance characteristics. The review concluded that eligible studies on diagnostic and prognostic ability of the test were small in sample size and had overt methodologic limitations, including retrospective assessment. The review pointed out that studies did not provide important information on patient selection, patient characteristics, treatments received, clinical end point definitions, justification of sample size, selection of test cut points, and selection among various statistical models. In addition, reviewers noted that there were strong indications that the selection of certain test cut points was determined post hoc, in that cutoffs varied widely across studies and were not validated in an external population.

Table 3 describes the included retrospective studies on clinical validity. A summary paragraph of each study follows the table.

Table 3. Retrospective Studies of Clinical Validity of PancraGEN

<table>
<thead>
<tr>
<th>Study</th>
<th>Population</th>
<th>Reference Standard</th>
<th>Performance Characteristics for PancraGEN (95% CI)</th>
<th>Performance Characteristics for Comparator (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Malhotra, et al</td>
<td>26 patients with pancreaticobiliary masses with cytologic diagnosis of atypical, negative, or indeterminate and minimum 3-mo FU</td>
<td>Surgical pathology or oncology FU report</td>
<td>Sensitivity: 47% (24% to 71%) Specificity: 100% (63% to 100%) PPV: 100% (60% to 100%) NPV: 50% (27% to 73%)</td>
<td>NA</td>
</tr>
<tr>
<td>Al-Haddad, et al</td>
<td>492 patients who had undergone IMP testing</td>
<td>Long-term FU, PancraGEN</td>
<td>Sensitivity: 67% (31% to 91%) Specificity: 81% (61% to 93%) PPV: 55% (25% to 82%) NPV: 88% (68% to 97%)</td>
<td>International consensus guidelines</td>
</tr>
</tbody>
</table>
PathFinder TG® Molecular Testing

<table>
<thead>
<tr>
<th>Policy #</th>
<th>00334</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original Effective Date:</td>
<td>01/09/2013</td>
</tr>
<tr>
<td>Current Effective Date:</td>
<td>01/18/2017</td>
</tr>
</tbody>
</table>

Malhotra et al (2014) at RedPath retrospectively evaluated 30 patients who presented with pancreaticobiliary masses and had a minimum follow-up of 3 months. Cytology correctly diagnosed 4 of 21 malignant cases (sensitivity, 19%), and identified 7 of 9 patients with nonaggressive disease (specificity, 78%). Only 26 patients with a cytologic diagnosis of atypical, negative, or indeterminate underwent PathFinderTG mutational profiling, precluding assessment of diagnostic performance. PathFinderTG correctly diagnosed 8 of 17 malignant cases (sensitivity, 47%) and identified all 9 patients with nonaggressive disease (specificity, 100%). Although the combination of positive cytology and positive PathFinderTG results improved sensitivity to 57% (12/21), 9 malignant cases were missed by both tests.

In 2015, Winner et al published a retrospective analysis of prospectively collected data from 40 patients that were evaluated for pancreatic cysts between 2006 and 2012 who had surgical resection and cyst fluid molecular analysis with PathFinder. The authors reported that the population tended to be low or intermediate risk according to Sendai international consensus criteria for surveillance resection. Surgical pathology was the reference standard. The molecular results were classified as “favor benign” or “favor aggressive” based on “clinical impression, fluid cytology, CEA and amylase results as well as the molecular cyst fluid analysis and adjunct tests.” It is not clear whether these were the diagnosis classifications provided on the PathFinder reports. Results are reported for 36 cysts (the reasons for 4 exclusions are not given). PathFinder correctly classified 6 of the 9 malignant cysts as “favor aggressive” (sensitivity, 67%, 95% CI, 31%, 91%) and correctly classified 22 of 27 benign cysts as “favor benign” (specificity, 81%, 95% CI, 61% to 93%). The positive predictive value (PPV) was 55% (95% CI, 25% to 82%) and the negative predictive value (NPV) was 88% (95% CI, 68% to 97%). Confidence intervals were calculated from the data provided.

In 2011, RedPath Integrated Pathology established the National Pancreatic Cyst Registry, and in 2015, published results of 492 (26%) of 1864 registered patients. The Registry website describes the registry as a prospective study “to evaluate the performance characteristics and clinical utility of integrated molecular pathology and determine the predictive value of both traditional first-line tests and integrated molecular pathology.” Ten academic medical centers and community-based practices registered patients who had pancreatic cysts, underwent PathFinderTG testing, and were followed for development of malignancy. Benign outcomes included benign surgical pathology results, low- or intermediate-grade dysplasia, resolution of cyst, or clinical follow-up by imaging for a minimum of 23 months without evidence of malignant outcome; malignant outcomes were determined by surgical pathology diagnosis of high-grade dysplasia, carcinoma in situ, or adenocarcinoma, newly diagnosed malignant cytology results, clinically confirmed pancreatic cancer in patient records, or death attributed to pancreatic cancer. Investigators compared the diagnostic performance of PathFinderTG to that of an international consensus classification.
scheme. Both classification schemes categorize patients with pancreatic cysts as high or low risk for malignancy; those considered high risk undergo surgical resection and those considered low risk may elect observation with surveillance. At median follow-up of 35 months for patients with benign and statistically indolent diagnoses (range, 23-92 months), 66 (35%) patients were diagnosed with malignancy. Sensitivity, specificity, PPV, and NPV were 83% (95% CI, 72% to 91%), 91% (95% CI, 87% to 93%), 58% (95% CI, 47% to 68%), and 97% (95% CI, 95% to 99%) for PathFinderTG versus 91% (95% CI, 81% to 97%, p=0.17 PathFinder vs consensus), 46% (95% CI, 41% to 51%, p<0.001), 21% (95% CI, 16% to 26%, p<0.001), and 97% (95% CI, 94% to 99%, p=0.88) for international consensus classification. Accuracy was 90% (95% CI, 87% to 92%) for PathFinderTG versus 52% (95% CI, 48% to 57%) for the international consensus classification. The negative likelihood ratio was very similar for PancraGEN (0.2; 95% CI, 0.1 to 0.3) and the international consensus classification (0.2; 95% CI, 0.1 to 0.4). However, the positive likelihood ratio was much higher for PancraGEN (8.9; 95% CI, 6.5 to 12.2) than for the international consensus classification (1.7; 95% CI, 1.5 to 1.9). The authors noted that the PathFinderTG diagnostic criteria have evolved over time and older cases in the registry were recategorized using the new criteria. Of the 492 registry cases included, 468 (95%) had to be recategorized using the current diagnostic categories. A strength of the study is the inclusion of both surgery and surveillance groups. Limitations include the retrospective design, resulting in the exclusion of 74% of all registry patients due primarily to insufficient follow-up; relatively short follow-up for observing malignant transformation of benign lesions; and the exclusion of patients classified as malignant by international consensus criteria who would not have undergone PathFinderTG testing. The reclassification of the majority of the PathFinderTG diagnoses due to evolving criteria between 2011 and 2014 also make it questionable whether the older estimates of performance characteristics are relevant. Because of these limitations, the evidence is not sufficient to draw conclusions on clinical validity.

Clinical Utility

The widespread use and increasing sensitivity of computed tomography and magnetic resonance imaging scans have been associated with marked increase in the finding of incidental pancreatic cysts. Although data have suggested that the malignant transformation of these cysts is very rare, due to the potential life-threatening prognosis of pancreatic cancer, an incidental finding can start an aggressive clinical workup. International consensus recommends surgical resection for all surgically fit patients with MCN or main duct IPMN. This is due to the uncertainty of the natural history of MCN and main duct IPMN and the presumed malignant potential of all types. Estimates of morbidity and mortality following resection vary. The 2015 AGA technical review combined estimates into a pooled mortality rate of about 2% and serious complication rate of about 30%. Therefore, there is a need for more accurate prognosis to optimize detection of malignancy while minimizing unnecessary surgery and treatment. Direct demonstration of clinical utility would require evidence that PancraGEN can produce incremental improvement in survival (by detecting malignant and potentially malignant cysts) and decreased morbidity of surgery (by avoiding surgery for cysts that are highly likely benign) when used adjunctively with the current diagnostic and prognostic standards. Indirect demonstration of clinical utility would require demonstration that the clinical validity of PancraGEN is such that if results were used to change management decisions, the resulting change in management would lead to improved outcomes.
PathFinder TG® Molecular Testing

Policy # 00334
Original Effective Date: 01/09/2013
Current Effective Date: 01/18/2017

The 2010 Agency for Healthcare Research and Quality (AHRQ) systematic review concluded that there were no studies at that time directly measuring whether using LOH-based topographic genotyping with PathFinderTG improved patient-relevant clinical outcomes.

Das et al published a simulation study in 2015 comparing 4 management strategies in a hypothetical cohort of 1000 asymptomatic patients with a 3-cm pancreatic cyst. The first strategy (watch and wait) used cross-sectional imaging and surgical consultation for resection only if symptoms or high-risk morphologic features developed. The second strategy (resect if operable) referred all patients for surgical consultation for cyst resection, and operability was determined according to a surgical risk score. In the third strategy (standard of care), hypothetical patients had cross-sectional imaging and EUS-FNA; mucinous cysts were referred for surgical resection and nonmucinous cysts were followed with periodic imaging. The fourth strategy (standard of care plus integrated molecular pathology) was the same as strategy 3 but also included molecular testing using PathFinderTG. The strategies were compared using a linear decision tree terminating in a Markov model. The estimates for the model variables were derived from published information or expert opinion. Specifically, the performance characteristics of the PathFinderTG assay used in strategy 4 were estimated using data from a literature search covering the years 1977 to 2012. Strategy 4 resulted in the highest estimated quality-adjusted life years (QALYs) of the 4 strategies in the base case (10.36 in strategy 1; 9.95 in strategy 2; 11.22 in strategy 3; 12.33 in strategy 4) and for most of the sensitivity analyses. Confidence intervals were not reported for the QALY estimates. The quality of the data behind many of the model assumptions was low, including the assumptions about the PathFinderTG performance characteristics. Given the uncertainty with the model assumptions, the relevance of the estimates from this simulation is unclear.

The 2015 publication from the National Pancreatic Cyst Registry also assessed evidence of clinical utility by describing how the PancraGEN might provide incremental benefit over consensus guidelines. In 289 patients who met consensus criteria for surgery, 229 had a benign outcome. The PancraGEN algorithm correctly classified 193 (84%) of the 229 as benign or statistically indolent. The consensus guidelines classified 203 patients as appropriate for surveillance and 6 of them had a malignant outcome. The PancraGEN correctly categorized 4 of 6 as high risk (see Table 4). The complete cross-classification of the 2 classification strategies by outcomes was not provided.

Using the same subset of 491 patients described in the previous section from the National Pancreatic Cyst Registry, Loren et al published results in 2016 comparing the association between PancraGEN diagnoses and Sendai and Fukouka consensus guideline recommendations with clinical decisions regarding intervention and surveillance. Patients were categorized as (1) “low-risk” or “high-risk” using the Interspace algorithm for PancraGEN diagnoses; (2) meeting “surveillance” criteria or “surgery” criteria using consensus guidelines; and (3) having “benign” or “malignant” outcomes during clinical follow-up as described previously. In addition, the real-world management decision was categorized as “intervention” if there was a surgical report, surgical pathology, chemotherapy or positive cytology within 12 months of the index EUS-FNA, and as “surveillance” otherwise. Among patients who actually received surveillance as the real-world decision, 57% were also classified as needing surveillance according to consensus guidelines and 96% were classified as low risk according to PancraGEN (calculated from data in Table 3). However, among patients who had an intervention as the real-world decision, 81% were classified as candidates for surgery...
by consensus guidelines and 40% were classified as high risk by PancraGEN. In univariate logistic regression analyses, the odds ratio (OR) for the association between PancraGEN diagnoses and real-world decision was higher (OR=16.8; 95% CI, 9.0 to 34.4) than the OR for the association between the consensus guidelines recommendations versus real-world decision (OR=5.6; 95% CI, 3.7 to 8.5). In 8 patients, the PancraGEN diagnosis was high risk and the consensus guideline classification was low risk. In 7 of these cases, the patient actually received an intervention resulting in the discovery of an additional 4 malignancies that would have been missed using the consensus guideline classification alone and in the remaining 1 case the patient underwent surveillance and did not develop a malignancy. In 202 patients, the PancraGEN diagnosis was low risk and the consensus guideline classification was high risk. In 90 of these 202, patients actually had an intervention and 8 additional malignancies were detected. In 112 of these 202, patients received surveillance and 1 additional malignancy occurred in the surveillance group.44 Table 4 shows the cross-tabulation of PancraGEN and international consensus classification by outcome. This study demonstrated that results from PancraGEN testing are associated with real-world decisions although other factors (eg, physician judgment, patient preferences) could affect these decisions. The best strategy for combining the results of PancraGEN with current diagnostic guidelines is not clear. There is some suggestion that PancraGEN might appropriately classify some cases misclassified by current consensus guidelines but the sample sizes in the cases where the PancraGEN and consensus guidelines disagree are small, limiting confidence in these results.

| Table 4. PancraGEN and International Consensus Classifications by Outcome (N=491) |
|---|--|--|--|--|
| Malignant Outcome | PancraGEN Classification | Benign Outcome | PancraGEN Classification |
| Consensus Classification | Low Risk | High Risk | Consensus Classification | Low Risk | High Risk |
| Surveillance | 2 | 4 | Surveillance | 193 | 4 |
| Surgery | 9 | 50 | Surgery | 193 | 36 |

Section Summary: Pancreatic Cysts

There are no studies describing the analytic validity of this technology. The evidence for the clinical validity of PancraGEN consists of several retrospective studies. Most studies evaluated performance characteristics of PancraGEN for classifying pancreatic cysts according to risk of malignancy without comparison to current diagnostic algorithms. The best evidence of incremental clinical validity comes from the report from the National Pancreatic Cyst Registry which compared PancraGEN performance characteristics to current international consensus guidelines and found that PancraGEN has slightly lower sensitivity (83% vs 91%), similar NPV (97% vs 97%) but better specificity (91% vs 46%) and PPV (58% vs 21%) compared to the consensus guidelines. The registry study included a very select group of patients, only a small fraction of the enrolled patients, and used a retrospective design. Longer follow-up including more of the registry patients is needed. The manufacturer has indicated that the technology is meant as an adjunct to first-line testing but no algorithm for combining PancraGEN with consensus guidelines for decision making has been proposed, and the data reporting outcomes in patients where the PancraGEN and consensus guideline diagnoses disagreed is limited. There are no prospective studies with a concurrent control demonstrating that PancraGEN can affect patient-relevant outcomes (eg, survival, time to tumor recurrence, reduction in unnecessary surgeries). The evidence reviewed does not demonstrate that PathFinderTG has incremental clinical value for diagnosis or prognosis of pancreatic cysts and associated cancer.
Barrett Esophagus
The AGA has defined Barrett esophagus as replacement of normal epithelium at the distal esophagus by intestinal metaplasia, which predisposes to malignancy. Although grading of dysplasia in mucosal biopsies is the current standard for assessing risk of malignant transformation, esophageal inflammation may mimic or mask dysplasia and interobserver variability may yield inconsistent risk classifications. Additional prognostic information therefore may be potentially useful.

The Interpace website describes BarreGEN as a molecular diagnostic test to "determine the risk of progressing to esophageal cancer in patients with Barrett’s Esophagus."

Analytic Validity
No studies describing the analytic validity or technical performance of BarreGEN were found. The laboratory that performs the analyses for BarreGEN is CLIA-certified.

Clinical Validity
The 2010 AHRQ a systematic review of LOH-based topographic genotyping with PathFinderTG did not find any publications of the PathFinderTG technology evaluating test performance, diagnostic ability, clinical validity or clinical utility for Barrett esophagus.

Khara et al (2014) examined LOH in microsatellite regions of the TP53 and CDKN2A tumor suppressor genes and in 8 other tumor suppressor genes (total 10 loci) as prognostic markers in Barrett esophagus. Formalin-fixed paraffin-embedded tissues from 415 patients from 3 study sites who had histologically diagnosed Barrett esophagus were microdissected to yield 877 specimens. Each was histologically classified as: normal squamous epithelium, columnar mucosa, intestinal metaplasia, indefinite for dysplasia (applied when cellular atypia is present but criteria for dysplasia are not met), low-grade dysplasia, high-grade dysplasia, or esophageal adenocarcinoma. At 1 study site, consensus diagnosis required agreement between 2 of 3 pathologists. All pathologists were blinded to molecular results, but it is unclear whether those conducting molecular analyses were blinded to pathology results. In molecular analysis, thresholds for defining significant LOH were determined using normal specimens; standard deviation greater than 2 was defined as “LOH present.” High clonality was defined as LOH mutation in more than 75% of DNA. Mutational load for each genomic locus was calculated by summing the proportional value of LOH and microsatellite instability (eg, 0.5 for low clonality, 1 for high clonality, 0.75 for microsatellite instability at a single locus, 0.5 for microsatellite stability at each additional locus). Mean mutational load (ML) increased with increasingly severe histology. Categories of ML (none, low [lower 95th percentile], high [upper 5th percentile]) appeared to discriminate less severe and more severe histology, but there was considerable overlap between no and low ML and between low and high ML.

Eluri et al (2015) published a case-control study evaluating ML as a predictor of progression to high-grade dysplasia or esophageal adenocarcinoma in Barrett esophagus. Twenty-three patients had Barrett esophagus with no or low-grade dysplasia at baseline who developed high-grade dysplasia or esophageal adenocarcinoma during follow-up. Forty-six controls also had no dysplasia or low-grade dysplasia but no progression during follow-up. Controls were matched in a 2:1 ratio to cases by age, sex, index biopsy histology, and length of follow-up. The ML assessments were made using the method described above in
Khara (2014). ML ranged from 0 to 10. Mean follow-up was 4 years and patients were mostly male with mean age around 63 years. Mean ML in baseline biopsies was higher in cases (2.21) than in controls (0.42; p<0.0001). The performance characteristics of the ML test for predicting progression were evaluated with different ML cutoffs ranging from 0.5 to 1.5. Sensitivity of the test was 100% at an ML of 0.5 or more while specificity was 96% at an ML of 1.5 or more. Accuracy was highest (90%) for an ML of 1 or more. All 10 genetic loci included in the ML score showed a higher rate of mutation in cases compared with controls.

Section Summary: Clinical Validity
The evidence for the clinical validity of BarreGEN consists of 2 observational studies evaluating the performance characteristics of a panel of genetic markers in Barrett esophagus. The studies showed that high ML could distinguish less versus more severe histology and was a predictor of progression in Barrett esophagus. How these findings may be applied in clinical practice is unclear. Although the manufacturer of BarreGEN helped to fund the studies, it is not clear if the specific test used was BarreGEN.

Clinical Utility
No studies describing the clinical utility of BarreGEN were found.

Section Summary: Barrett Esophagus
There is limited evidence evaluating the clinical validity of the BarreGEN test for evaluating Barrett esophagus. The evidence reviewed does not demonstrate that PathFinderTG testing for prognosis of Barrett esophagus adds incremental value to current prognostic assessments.

Ongoing and Unpublished Clinical Trials
Some currently unpublished trials that might impact this policy are listed in Table 5.

Table 5. Summary of Key Trials

<table>
<thead>
<tr>
<th>NCT No.</th>
<th>Trial Name</th>
<th>Planned Enrollment</th>
<th>Completion Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ongoing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCT01202136</td>
<td>The Clinical, Radiologic, Pathologic and Molecular Marker Characteristics of Pancreatic Cysts Study (PCyst)</td>
<td>450</td>
<td>Sep 2016</td>
</tr>
<tr>
<td>NCT02000999</td>
<td>The Diagnostic Yield of Malignancy Comparing Cytology, FISH and Molecular Analysis of Cell Free Cytology Brush Supernatant in Patients With Biliary Strictures Undergoing Endoscopic Retrograde Cholangiography (ERC): A Prospective Study</td>
<td>110</td>
<td>Jan 2017</td>
</tr>
<tr>
<td>NCT02078544</td>
<td>Integrated Molecular Analysis of Cancer in Gynaecologic Oncology (IMAC-GO)</td>
<td>700</td>
<td>Aug 2018</td>
</tr>
<tr>
<td>NCT02692898</td>
<td>Biomarker Analysis of Central Nervous System Tumors</td>
<td>500</td>
<td>Nov 2024</td>
</tr>
</tbody>
</table>

NCT: national clinical trial.

Summary of Evidence
For individuals who have pancreatic cysts who do not have a definitive diagnosis after first-line evaluation and who receive standard diagnostic and management practices plus topographic genotyping (PancraGEN molecular testing), the evidence includes retrospective studies of clinical validity and clinical utility. Relevant
outcomes are overall survival, disease-specific survival, test accuracy and validity, change in disease status, morbid events, and quality of life. The best evidence of incremental clinical validity comes from the National Pancreatic Cyst Registry report that compared PancraGEN performance characteristics to current international consensus guidelines and provided preliminary but inconclusive evidence of a small incremental benefit for PancraGEN. The analyses from the registry study included only a small proportion of enrolled patients, relatively short follow-up time for observing malignant transformation, and limited data on cases where the PancraGEN results are discordant with international consensus guidelines. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals who have Barrett esophagus who receive standard prognostic techniques plus topographic genotyping (BarreGEN molecular testing), the evidence includes 2 observational studies evaluating the performance characteristics of a panel of genetic markers in Barrett esophagus. Relevant outcomes are overall survival, disease-specific survival, test accuracy and validity, change in disease status, morbid events, and quality of life. The studies showed that high mutational load could distinguish less versus more severe histology and was a predictor of progression in Barrett esophagus. It is not clear if the test used was specifically BarreGEN or if the BarreGEN prognostic algorithm was applied for classification. The evidence is insufficient to determine the effects of the technology on health outcomes.

References

35. Winner M, Sethi A, Poneros JM, et al. The role of molecular analysis in the diagnosis and surveillance of pancreatic cystic neoplasms. JOP. 2015;16(2):143-149. PMID 25791547

PathFinder TG® Molecular Testing

Policy # 00334
Original Effective Date: 01/09/2013
Current Effective Date: 01/18/2017

Policy History
Original Effective Date: 01/09/2013
Current Effective Date: 01/18/2017
01/03/2013 Medical Policy Committee review
01/09/2013 Medical Policy Committee approval. New policy.
01/09/2014 Medical Policy Committee review
01/15/2014 Medical Policy Implementation Committee approval. No change to coverage.
01/08/2015 Medical Policy Committee review
01/21/2015 Medical Policy Implementation Committee approval. Added Barrett esophagus to list of investigational indications.
01/07/2016 Medical Policy Committee review
01/22/2016 Medical Policy Implementation Committee approval. No change to coverage.
01/01/2017 Coding update: Removing ICD-9 Diagnosis Codes
01/05/2017 Medical Policy Committee review
01/18/2017 Medical Policy Implementation Committee approval. Gliomas removed from policy and policy statement (PathFinderTG® Glioma not commercially available).

Next Scheduled Review Date: 01/2018
PathFinder TG® Molecular Testing

Policy # 00334
Original Effective Date: 01/09/2013
Current Effective Date: 01/18/2017

Coding
The five character codes included in the Blue Cross Blue Shield of Louisiana Medical Policy Coverage Guidelines are obtained from Current Procedural Terminology (CPT®), copyright 2016 by the American Medical Association (AMA). CPT is developed by the AMA as a listing of descriptive terms and five character identifying codes and modifiers for reporting medical services and procedures performed by physician.

The responsibility for the content of Blue Cross Blue Shield of Louisiana Medical Policy Coverage Guidelines is with Blue Cross and Blue Shield of Louisiana and no endorsement by the AMA is intended or should be implied. The AMA disclaims responsibility for any consequences or liability attributable or related to any use, nonuse or interpretation of information contained in Blue Cross Blue Shield of Louisiana Medical Policy Coverage Guidelines. Fee schedules, relative value units, conversion factors and/or related components are not assigned by the AMA, are not part of CPT, and the AMA is not recommending their use. The AMA does not directly or indirectly practice medicine or dispense medical services. The AMA assumes no liability for data contained or not contained herein. Any use of CPT outside of Blue Cross Blue Shield of Louisiana Medical Policy Coverage Guidelines should refer to the most current Current Procedural Terminology which contains the complete and most current listing of CPT codes and descriptive terms. Applicable FARS/DFARS apply.

CPT is a registered trademark of the American Medical Association.

Codes used to identify services associated with this policy may include (but may not be limited to) the following:

<table>
<thead>
<tr>
<th>Code Type</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPT</td>
<td>81402, 84999, 89240</td>
</tr>
<tr>
<td>HCPCS</td>
<td>No codes</td>
</tr>
<tr>
<td>ICD-10 Diagnosis</td>
<td>All related diagnoses</td>
</tr>
</tbody>
</table>

*Investigational – A medical treatment, procedure, drug, device, or biological product is Investigational if the effectiveness has not been clearly tested and it has not been incorporated into standard medical practice. Any determination we make that a medical treatment, procedure, drug, device, or biological product is Investigational will be based on a consideration of the following:

A. Whether the medical treatment, procedure, drug, device, or biological product can be lawfully marketed without approval of the U.S. FDA and whether such approval has been granted at the time the medical treatment, procedure, drug, device, or biological product is sought to be furnished; or

B. Whether the medical treatment, procedure, drug, device, or biological product requires further studies or clinical trials to determine its maximum tolerated dose, toxicity, safety, effectiveness, or effectiveness as compared with the standard means of treatment or diagnosis, must improve health outcomes, according to the consensus of opinion among experts as shown by reliable evidence, including:

 1. Consultation with the Blue Cross and Blue Shield Association technology assessment program (TEC) or other nonaffiliated technology evaluation center(s);
 2. Credible scientific evidence published in peer-reviewed medical literature generally recognized by the relevant medical community; or
 3. Reference to federal regulations.

‡ Indicated trademarks are the registered trademarks of their respective owners.

NOTICE: Medical Policies are scientific based opinions, provided solely for coverage and informational purposes. Medical Policies should not be construed to suggest that the Company recommends, advocates, requires, encourages, or discourages any particular treatment, procedure, or service, or any particular course of treatment, procedure, or service.