Percutaneous Left-Atrial Appendage Closure Devices for Stroke Prevention in Atrial Fibrillation

Policy # 00296
Original Effective Date: 05/18/2011
Current Effective Date: 04/19/2017

Applies to all products administered or underwritten by Blue Cross and Blue Shield of Louisiana and its subsidiary, HMO Louisiana, Inc. (collectively referred to as the “Company”), unless otherwise provided in the applicable contract. Medical technology is constantly evolving, and we reserve the right to review and update Medical Policy periodically.

When Services May Be Eligible for Coverage
Coverage for eligible medical treatments or procedures, drugs, devices or biological products may be provided only if:

- Benefits are available in the member’s contract/certificate, and
- Medical necessity criteria and guidelines are met.

Based on review of available data, the Company may consider the use of a device with U.S. Food and Drug Administration (FDA) approval for percutaneous left atrial appendage closure (eg, the Watchman) for the prevention of stroke in patients with atrial fibrillation to be eligible for coverage when the following criteria are met:

Patient Selection Criteria
Coverage eligibility will be considered when the following criteria has been met:

- There is an increased risk of stroke and systemic embolism based on CHADS² or CHA²DS²-VASc score and systemic anticoagulation therapy is recommended; AND
- The long-term risks of systemic anticoagulation outweigh the risks of the device implantation

When Services Are Considered Investigational
Coverage is not available for investigational medical treatments or procedures, drugs, devices or biological products.

Based on review of available data, the Company considers the use of a device with FDA approval for percutaneous left atrial appendage closure (eg, the Watchman) for stroke prevention in patients who do not meet the above criteria to be investigational.*

Based on review of available data, the Company considers the use of other percutaneous left atrial appendage closure devices, including but not limited to the Lariat®, PLAATO, and Amplatzer® devices, for stroke prevention in patients with atrial fibrillation to be investigational.*

Background/Overview
Stroke is the most serious complication of atrial fibrillation (AF). The estimated incidence of stroke in nontreated patients with AF is 5% per year. Stroke associated with AF is primarily embolic in nature, tends to be more severe than the typical ischemic stroke, and causes higher rates of mortality and disability. As a result, stroke prevention is one of the main goals of AF treatment.

Stroke in AF occurs primarily as a result of thromboembolism from the left atrium. The lack of atrial contractions in AF leads to blood stasis in the left atrium, and this low flow state increases the risk for
thrombosis. The area of the left atrium with the lowest blood flow in AF, and, therefore, the highest risk of thrombosis, is the left atrial appendage (LAA). It has been estimated that 90% of left atrial thrombi occur in the LAA.

The main treatment for stroke prevention in AF is anticoagulation, which has proven efficacy. The risk for stroke among patients with AF is stratified on the basis of several factors. A commonly used score, the CHADS\textsubscript{2} score, assigns 1 point each for the presence of heart failure, hypertension, age 75 years or older, diabetes, or prior stroke or transient ischemic attack. The CHADS\textsubscript{2}-VASc score includes sex, more age categories, and the presence of vascular disease, in addition to the risk factors used in the CHADS\textsubscript{2} score. Warfarin is the predominant agent in clinical use. A number of newer anticoagulant medications, including dabigatran, rivaroxaban, and apixaban, have recently received U.S. FDA approval for stroke prevention in nonvalvular AF and have demonstrated noninferiority to warfarin in clinical trials. While anticoagulation is effective for stroke prevention, there is an increased risk of bleeding. Also, warfarin requires frequent monitoring and adjustments, as well as lifestyle changes. Dabigatran does not require monitoring. However, unlike warfarin, the antithrombotic effects of dabigatran are not reversible with any currently available hemostatic drugs. Guidelines from the American College of Chest Physicians recommend the use of oral anticoagulation for patients with AF who are at high risk of stroke (ie, CHADS\textsubscript{2} score ≥2), with more individualized choice of antithrombotic therapy in patients with lower stroke risk.

Bleeding is the primary risk associated with systemic anticoagulation. A number of risk scores have been developed to estimate the risk of significant bleeding in patients treated with systemic anticoagulation. An example is the HAS-BLED score, which has validated to assess the annual risk of significant bleeding in patients with AF treated with warfarin. The score ranges from 0 to 9, based on a number of clinical characteristics, including the presence of hypertension, renal and liver function, history of stroke, bleeding, labile international normalized ratios (INRs), age, and drug/alcohol use. Scores of 3 or greater are considered to be associated with high risk of bleeding, potentially signaling the need for closer monitoring of the patient for adverse risks, closer monitoring of INRs, or differential dose selections of oral anticoagulants or aspirin.

Surgical removal, or exclusion, of the LAA is often performed in patients with AF who are undergoing open heart surgery for other reasons. Percutaneous LAA closure devices have been developed as a nonpharmacologic alternative to anticoagulation for stroke prevention in AF. The devices may prevent stroke by occluding the LAA, thus preventing thrombus formation.

Several versions of LAA occlusion devices have been developed. The Watchman left atrial appendage system (Boston Scientific, Maple Grove, MN) is a self-expanding nickel titanium device. It has a polyester covering and fixation barbs for attachment to the endocardium. Implantation is performed percutaneously through a catheter delivery system, using venous access and transseptal puncture to enter the left atrium. Following implantation, patients are anticoagulated with warfarin or alternative agents for approximately 1 to 2 months. After this period, patients are maintained on antiplatelet agents (ie, aspirin and/or clopidogrel) indefinitely. The Lariat Loop Applicator is a suture delivery device that is intended to close a variety of surgical wounds in addition to left atrial appendage closure. The CardioblateTM closure device developed by Medtronic is currently being tested in clinical studies. The Amplatzer cardiac plug (St. Jude Medical,
Minneapolis, MN), is FDA-approved for closure of atrial septal defects but not LAA closure device. A second-generation device, the Amplatzer Amulet, has been developed. The Percutaneous LAA Transcatheter Occlusion device (eV3, Plymouth, MN) has also been evaluated in research studies but has not received FDA approval.

FDA or Other Governmental Regulatory Approval

U.S. Food and Drug Administration (FDA)

In 2009, the Watchman Left Atrial Appendage Closure Technology (Boston Scientific, Marlborough, MA) was originally considered by the U.S. FDA for approval based on the results of the Left Atrial Appendage Versus Warfarin Therapy for Prevention of Stroke in Patients with Atrial Fibrillation (PROTECT-AF) randomized controlled trial (RCT). The device underwent 3 panel reviews before it was approved by FDA through the premarket approval process on March 13, 2015.

This device is indicated to reduce the risk of thromboembolism from the LAA in patients with nonvalvular atrial fibrillation who:

- Are at increased risk for stroke and systemic embolism based on CHADS$_2$ or CHA$_2$DS$_2$-VASc scores and are recommended for anticoagulation therapy;
- Are deemed by their physicians to be suitable for warfarin; and
- Have an appropriate rationale to seek a nonpharmacologic alternative to warfarin, taking into account the safety and effectiveness of the device compared to warfarin.

FDA product code: NGV.

At least 2 other devices have been studied for LAA occlusion, but are not approved in the United States for percutaneous closure of the LAA. In 2006, the Lariat Loop Applicator device (SentreHEART, Redwood City, CA), a suture delivery system, was cleared for marketing by the FDA through the 510(k) process. The intended use is to facilitate suture placement and knot tying in surgical applications where soft tissues are being approximated or ligated with a pretied polyester suture. The Amplatzer Amulet$^{®}$ device (St. Jude Medical, Plymouth, MN) has a CE approval in Europe for LAA closure, but is not currently approved in the United States for any indication.

Centers for Medicare and Medicaid Services (CMS)

There is no national coverage determination (NCD). In the absence of an NCD, coverage decisions are left to the discretion of local Medicare carriers.

Rationale/Source

Assessment of efficacy for therapeutic interventions such as the left atrial appendage closure (LAAC) devices involves a determination of whether the intervention improves health outcomes. The optimal study design for this purpose is a RCT that includes clinically relevant measures of health outcomes. Intermediate outcome measures, also known as surrogate outcome measures, may also be adequate if there is an established link between the intermediate outcome and true health outcomes. Nonrandomized comparative studies and uncontrolled studies can sometimes provide useful information on health outcomes, but are prone to biases. For the use of LAAC devices, the appropriate comparison group could be oral
Percutaneous Left-Atrial Appendage Closure Devices for Stroke Prevention in Atrial Fibrillation

Policy # 00296
Original Effective Date: 05/18/2011
Current Effective Date: 04/19/2017

anticoagulation, no therapy (for patients who have prohibitive risk for oral anticoagulation), or open surgical repair.

The evidence on the efficacy of LAAC devices consists of numerous case series of various occlusion devices, and 2 published RCTs of the Watchman device that compared LAAC with warfarin anticoagulation. Evidence on each device will be reviewed separately, because the devices are not similar in design, and each may have its own unique considerations.

Watchman Device
The Watchman device is intended as an alternative to anticoagulation for patients with AF who are at increased risk for embolic stroke. RCTs comparing the Watchman device to anticoagulation are essential for determining efficacy of the device. Nonrandomized studies and case series may offer additional evidence on populations included in the RCTs, durability of effect, and/or adverse events. This evidence review will include RCTs and systematic reviews of RCTs for efficacy, and will review select nonrandomized studies and case series that offer additional information of different populations, durability, and/or adverse events.

A review of the evidence related to the efficacy of the Watchman device is based, in part, on a Blue Cross Blue Shield Association TEC Assessment developed in June 2014, which evaluated use of the Watchman device for patients eligible and ineligible for anticoagulation therapy. The Assessment determined that the device did not meet TEC criteria. The Assessment made the following conclusions about the use of LAAC in patients without contraindications to anticoagulation:

“We identified 2 RCTs and 1 case series evaluating the Watchman device. The RCTs were noninferiority trials and compared LAAC with anticoagulation. The first trial showed a lower rate of a composite outcome (stroke, death, and embolism) in patients receiving LAAC and met noninferiority criteria compared with anticoagulation, but FDA review noted problems with patient selection, potential confounding with other treatments, and losses to follow-up. The second trial, which incorporated the first trial’s results as a discounted informative prior in a Bayesian analysis, showed similar rates of the same composite outcome but did not meet noninferiority criteria. The second trial met its second principal outcome noninferiority criteria in 1 of 2 analyses and a performance goal for short-term complication rate. When assessing the results of both trials, the relative performance of LAAC and anticoagulation is uncertain.”

Although the Watchman device and other LAAC devices would ideally represent an alternative to oral anticoagulation for the prevention of stroke in patients with AF, during the postimplantation period, the device may be associated with increased thrombogenicity and, therefore, anticoagulation is used during the periprocedural period. Most studies evaluating the Watchman device have included patients who are eligible for anticoagulation.

Two individual RCTs, the PROTECT AF and PREVAIL trials, have evaluated the Watchman device for stroke prevention in patients with AF who are at increased risk for embolic stroke. These trials are reviewed in depth next, along with meta-analyses of these studies.
Meta-Analyses

A number of meta-analyses have been performed that combine results of the available RCTs. The most rigorous of them is a patient-level meta-analysis by Holmes et al. This study included patient-level data from the industry-sponsored PROTECT AF and PREVAIL trials, described below, together with both studies' continued access registries. The PROTECT AF and PREVAIL registries were designed to include patients with similar baseline characteristics as their respective RCTs. The meta-analysis included 2406 patients, 1877 treated with the Watchman device and 382 treated with warfarin alone. Mean patient follow-up durations were 0.58 years and 3.7 years, respectively, for the PREVAIL continued access registry and the PROTECT AF continued access registry. In a meta-analysis of 1114 patients treated in the RCTs, compared with warfarin, LAAC met the study's noninferiority criteria for the primary composite efficacy end point of all-cause stroke, systemic embolization, and cardiovascular death (hazard ratio [HR], 0.79; 95% confidence interval [CI], 0.52 to 1.2; p=0.22). All-cause stroke rates did not differ significantly between groups (1.75 per 100 patient-years for LAAC vs 1.87 per 100 patient-years for warfarin; HR=1.02; 95% CI, 0.62 to 1.7; p=0.94). However, LAAC-treated patients had higher rates of ischemic stroke (1.6 events per 100 patient-years vs 0.9 events per 100 patient-years; HR=1.95, p=0.05) when procedure-related strokes were included, but had lower rates of hemorrhagic stroke (0.15 events per 100 patient-years vs 0.96 events per 100 patient-years; HR=0.22; 95% CI, 0.08 to 0.61; p=0.004).

A second patient-level meta-analysis of the 2 RCTs evaluated bleeding outcomes. There were a total of 54 episodes of major bleeding, with the most common types being gastrointestinal (GI) bleed (31/54 [57%]) and hemorrhagic stroke (9/54 [17%]). On combined analysis, the rate of major bleeding episodes over the entire study period did not differ between groups. There were 3.5 events per 100 patient-years in the Watchman group compared with 3.6 events per 100 patient-years in the anticoagulation group, for a rate ratio (RR) of 0.96 (95% CI, 0.66 to 1.40; p=0.84). However, there was a reduction in bleeding risk for the Watchman group past the initial periprocedural period. For bleeding events occurring more than 7 days postprocedure, the event rates were 1.8 per 100 patient-years in the Watchman group compared with 3.6 per 100 patient-years in the anticoagulation group (RR=0.49; 95% CI, 0.32 to 0.75; p=0.01). For bleeding events occurring more than 6 months postprocedure (the time at which antiplatelet therapy is discontinued for patients receiving the Watchman device), the event rates were 1.0 per 100 patient-years in the Watchman group compared with 3.5 per 100 patient-years in the anticoagulation group (RR=0.28; 95% CI, 0.16 to 0.49; p<0.001).

Randomized Controlled Trials

PROTECT-AF Trial

The first RCT published was the PROTECT AF study, which was a randomized, unblinded trial that evaluated the noninferiority of an LAAC device compared to warfarin for stroke prevention in AF. The trial randomized 707 patients from 59 centers in the United States and Europe to the Watchman device or warfarin treatment in a 2:1 ratio. Mean follow-up was 18±10 months. The primary efficacy outcome was a composite end point of stroke (ischemic or hemorrhagic), cardiovascular or unexplained death, or systemic embolism. There was also a primary safety outcome, a composite end point of excessive bleeding (intracranial or GI bleeding) and procedure-related complications (pericardial effusion, device embolization, procedure-related stroke).
Percutaneous Left-Atrial Appendage Closure Devices for Stroke Prevention in Atrial Fibrillation

Policy # 00296
Original Effective Date: 05/18/2011
Current Effective Date: 04/19/2017

The primary efficacy outcome occurred at a rate of 3.0 per 100 patient-years in the LAAC group compared with 4.9 per 100 patient-years in the warfarin group (RR=0.62; 95% credible interval [CrI], 0.35 to 1.25). Based on these outcomes, the probability of noninferiority was greater than 99.9%. For the individual components of the primary outcome, cardiovascular/unexplained death and hemorrhagic stroke were higher in the warfarin group. In contrast, ischemic stroke was higher in the LAAC group at 2.2 per 100 patient-years compared with 1.6 per 100 patient-years in the warfarin group (RR=1.34; 95% CrI, 0.60 to 4.29).

The primary safety outcome occurred more commonly in the LAAC group, at a rate of 7.4 per 100 patient-years compared with 4.4 per 100 patient-years in the warfarin group (RR=1.69; 95% CrI, 1.01 to 3.19). The excess in adverse event rates for the LAAC group was primarily the result of early adverse events associated with placement of the device. The most frequent type of complication related to LAAC device placement was pericardial effusion requiring intervention, which occurred in 4.8% of patients (22/463).

Longer term follow-up from the PROTECT AF study was reported by Reddy et al in 2013. At a mean follow-up of 2.3 years, the results were similar to the initial report. The relative risk for the composite primary outcome in the Watchman group compared with anticoagulation was 0.71, and this met noninferiority criteria with a confidence of greater than 99%. Complications were more common in the Watchman group, with an estimated rate of 5.6% per year in the Watchman group compared with 3.6% per year in the warfarin group. Outcomes through 4 years of follow-up were reported by Reddy et al in 2014. Mean follow-up was 3.9 years in the LAAC group and 3.7 years in the warfarin group. In the LAAC group, warfarin was discontinued in 345 (93.2%) of 370 patients by the 12 month follow-up evaluation. During the follow-up period, the relative risk for the composite primary outcome in the Watchman group compared with anticoagulation was 0.60 (8.4% in the device group vs 13.9% in the anticoagulation group; 95% CrI, 0.41 to 1.05), which met the noninferiority criteria with a confidence of greater than 99.9%. Fewer hemorrhagic strokes (0.6% vs 4.0%; RR=0.15; 95% CrI, 0.03 to 0.49) and fewer cardiovascular events occurred in the Watchman group (3.7% vs 0.95%; RR=0.40; 95% CrI, 0.23 to 0.82). Rates of ischemic stroke did not differ significantly between groups, but Watchman group patients had lower all-cause mortality than anticoagulation group patients (12.3% vs 18.0%; HR=0.66; 95% CI, 0.45 to 0.98; p=0.04).

Alli et al reported quality-of-life parameters, as measured by change in Short-Form 12-Item Health Survey scores from baseline to 12-month follow-up, for a subset of 547 subjects in the PROTECT AF study. For the subset of PROTECT AF subjects included in the Alli analysis, at baseline, control group subjects had a higher mean CHADS\textsubscript{2} score (2.4 vs 2.2; p=0.052) and were more likely to have a history of coronary artery disease (49.5% vs 39.6%; p=0.028). For subjects in the Watchman group, the total physical score improved in 34.9% and was unchanged in 29.9%; for those in the warfarin group, the total physical score improved in 24.7% and was unchanged in 31.7% (p=0.01).

PREVAIL Trial

A second RCT, the PREVAIL trial, was conducted after the 2009 FDA decision on the Watchman device to address some of the limitations of the PROTECT AF study, including its inclusion of patients with low stroke risk (CHADS\textsubscript{2} scores of 1), high rates of adjunctive antiplatelet therapy use in both groups, and generally poor compliance with warfarin therapy in the control group. Results from the PREVAIL trial were initially presented in FDA documentation, and published in peer-reviewed form by Holmes et al in 2014. In the
PREVAIL trial, 461 subjects enrolled at 41 sites were randomized in a 2:1 fashion to the Watchman device or control, which consisted of either initiation or continuation of warfarin therapy with a target INR of 2.0 to 3.0. Subjects had nonvalvular AF and required treatment for prevention of thromboembolism based on a CHADS2 score of 2 or higher (or \geq 1 with other indications for warfarin therapy based on American College of Cardiology/American Heart Association/European Society of Cardiology guidelines) and were eligible for warfarin therapy. In the device group, warfarin and low-dose aspirin were continued until 45 days postprocedure; if a follow-up echocardiogram at 45 days showed occlusion of the LAA, warfarin therapy could be discontinued. Subjects who discontinued warfarin were treated with aspirin and clopidogrel for 6 months after device implantation and with aspirin 325 mg indefinitely after that.

Three noninferiority primary efficacy end points were specified: (1) occurrence of ischemic or hemorrhagic stroke, cardiovascular or unexplained death, and systemic embolism (18-month rates); (2) occurrence of late ischemic stroke and systemic embolization (beyond 7 days postrandomization, 18-month rates); and (3) occurrence of all-cause death, ischemic stroke, systemic embolism, or device- or procedure-related events requiring open cardiac surgery or major endovascular intervention (eg, pseudoaneurysm repair, arteriovenous fistula repair, or other major endovascular repair) occurring within 7 days of the procedure or by hospital discharge, whichever was later. The 18-month event rates were determined using Bayesian statistical methods to integrate data from the PROTECT-AF study. All patients had a minimum follow-up of 6 months. For randomized subjects, mean follow-up was 11.8 months and median follow-up was 12.0 months (range, 0.03-25.9 months).

The first primary end point, the 18-month modeled RR between the device and control groups was 1.07 (95% CrI, 0.57 to 1.89). Because the upper bound of the 95% CrI was above the preset noninferiority margin of 1.75, the noninferiority criteria were not met. For the second primary end point of late ischemic stroke and systemic embolization, the 18-month RR between the device and control groups was 1.6 (95% CrI, 0.5 to 4.2), with an upper bound of the 95% CrI above the preset noninferiority margin of 2.0. The rate difference between the device and control groups was 0.005 (95% CrI, -0.019 to 0.027). The upper bound of the 95% CrI was lower than the noninferiority margin of 0.0275, so the noninferiority criterion was met for the rate difference. For the third primary end point (major safety issues), the noninferiority criterion was met.

Nonrandomized Studies
Numerous case series and nonrandomized studies have been published. A few of them are notable in that they were conducted in patients not eligible for anticoagulation, a population not included in PROTECT AF and PREVAIL. Reddy et al conducted a multicenter, prospective, nonrandomized trial to evaluate the safety and efficacy of LAAC with the Watchman device in patients with nonvalvular AF with a CHADS2 score 1 or higher who were considered ineligible for warfarin. Postimplantation, patients received 6 months of clopidogrel or ticlopidine and lifelong aspirin therapy. Thirteen (8.7%) patients had a procedure- or device-related serious adverse event, most commonly pericardial effusion (3 patients). Over a mean 14.4 months of follow-up, all-cause stroke or systemic embolism occurred in 4 patients.

Chun et al compared the Watchman device to the Amplatzer cardiac plug among patients with nonvalvular AF, who were at high risk for stroke and had a contraindication to or were not willing to accept oral anticoagulants. Eighty patients were randomized to left atrial appendage occlusion with the Watchman or
Percutaneous Left-Atrial Appendage Closure Devices for Stroke Prevention in Atrial Fibrillation

Policy # 00296
Original Effective Date: 05/18/2011
Current Effective Date: 04/19/2017

the Amplatzer device. After device implantation, either preexisting oral anticoagulation therapy or dual platelet inhibition with aspirin and clopidogrel was continued for 6 weeks. There were no statistically significant differences in procedure time, fluoroscopy time, or major safety events between the 2 groups. At a median 364 days of follow-up, there were no cases of stroke/transient ischemic attack or other bleeding complications.

The EWOLUTION Watchman registry is intended to evaluate procedural success, long-term outcomes, and adverse events in real-world settings. This registry compiles data from patients receiving the Watchman device at 47 centers in 13 countries. A publication from the EWOLUTION registry in 2016 reported on 30-day outcomes of device implantation in 1021 patients. The overall population had a risk of bleeding that was substantially higher than that for patients in the RCTs. Over 62% of patients included in the registry were deemed ineligible for anticoagulation by their physicians. Approximately one-third of patients had a history of major bleeding, and 40% had HAS-BLED scores of 3 or greater, indicating moderate-to-high risk of bleeding. Procedural success was achieved in 98.5% of patients, and 99.3% of implants demonstrated no blood flow or minimal residual blood flow postprocedure. Serious adverse events due to the device or procedure occurred at an overall rate of 2.8% (95% CI, 1.9% to 4.0%) at 7 days and 3.6% (95% CI, 2.5% to 4.9%) at 30 days. The most common serious adverse event was major bleeding.

Section Summary: Watchman Device
The most relevant evidence on use of the Watchman device for LAAC in patients eligible for anticoagulation is from 2 industry-sponsored RCTs and a patient-level meta-analysis of those studies. This evidence suggests that the Watchman is associated with an increased periprocedural ischemic stroke risk, which is balanced against a decreased hemorrhagic stroke risk. While neither trial individually demonstrates definitive improvement in outcomes, the patient-level meta-analysis reported improvement for a range of clinical outcomes for patients treated with the Watchman device. The overall bleeding risk is greater for the Watchman device in the periprocedural period, but decreased after the initial periprocedural period.

Lariat Device
A systematic review of published studies on the Lariat device was published in 2016. No RCTs were identified. Five case series were selected, with a total of 309 patients (range, 4-154 patients) treated. The combined estimate of procedural success was 90.3%. One (0.3%) death was reported and 7 (2.3%) patients required urgent cardiac surgery. Reviewers also searched the MAUDE database for adverse events, and found 35 unique reports. Among the 35 reported complications, there were 5 deaths and 23 cases of emergency cardiac surgery.

Individual case series continue to be published, including a large case series of 712 consecutive patients from 18 U.S. hospitals. This series reported a procedural success rate of 95% and complete closure in 98%. There was 1 death and emergent cardiac surgery was required in 1.4%. Other individual case series are smaller, reporting success rates and complication rates in the same range.

Section Summary: Lariat Device
There are no RCTs of the Lariat device for this indication. The available case series are not sufficient to determine treatment efficacy.
Amplatzer Cardiac Plug Device

The available evidence on use of the Amplatzer device for left atrial occlusion consists of a number of case series. The largest series identified was by Nietlispach et al, which included 152 patients from a single institution in Europe. Short-term complications occurred in 9.8% (15/152) of patients. Longer term adverse outcomes occurred in 7% of patients, including 2 strokes, 1 peripheral embolization, and 4 episodes of major bleeding. Device embolization occurred in 4.6% (7/152) of patients. Other reports of patients treated with the Amplatzer device include a series of 90 patients from Belgium, 86 patients from Portugal, 37 patients from Italy, 35 patients from Spain, 21 patients from Poland, and 20 patients from China. All series reported high procedural success rates, as well as various complications such as vascular complications, air embolism, esophageal injury, cardiac tamponade, and device embolization.

Several other case series have reported on use of the Amplatzer device in patients with a contraindication to oral anticoagulation therapy. The largest reported outcomes, up to 4 years postprocedure, for 134 patients with nonvalvular AF and a long-term contraindication to oral anticoagulation treated with the Amplatzer device. Patients had a median CHA2DS2-VASc score of 4 and were generally considered at high risk for bleeding complications. Procedural success occurred in 93.3%, and 3 major procedure-related complications (2 cases of cardiac tamponade, 1 case of pericardial effusion requiring drainage or surgery) occurred. Over a mean follow-up of 680 days, observed annual rates of ischemic strokes and any thromboembolic events were 0.8% and 2.5%, respectively. Other case series have been published in this population, ranging from 37 to 100 patients. They also reported high success rates and low procedural complications.

Section Summary: Amplatzer Cardiac Plug Device

There are no RCTs of the Amplatzer device for this indication. The available case series are not sufficient to determine treatment efficacy.

PLAATO Device

The available evidence on outcomes following use of the PLAATO device for stroke prevention in AF comes from case series and cohort studies. Bayard et al reported on 180 patients with nonrheumatic AF, a contraindication to warfarin, and treatment with the Percutaneous Left Atrial Appendage Transcatheter Occlusion (PLAATO) device. Placement was successful in 90% of patients. Two (1.1%) patients died within 24 hours of the procedure, and 6 (3.3%) patients had cardiac tamponade, with 2 requiring surgical drainage. Other case reports and small case series have found complications, including multiple reports of thrombus formation at the site of device placement.

Section Summary: PLAATO Device

There are no RCTs of the PLAATO device for this indication. The available case series are not sufficient to determine treatment efficacy.

Ongoing and Unpublished Clinical Trials

Some currently unpublished trials that might influence this policy are listed in Table 1.
Percutaneous Left-Atrial Appendage Closure Devices for Stroke Prevention in Atrial Fibrillation

Policy # 00296
Original Effective Date: 05/18/2011
Current Effective Date: 04/19/2017

Table 1. Summary of Key Trials

<table>
<thead>
<tr>
<th>NCT No.</th>
<th>Trial Name</th>
<th>Planned Enrollment</th>
<th>Completion Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ongoing</td>
<td>NCT02039167 WATCH Bleeding Episodes After Left Atrial Appendage Occlusion Versus Usual Care in Patients With Atrial Fibrillation and Severe to End-stage Chronic Kidney Disease (WatchAFIB in CKD)</td>
<td>300</td>
<td>Jun 2017</td>
</tr>
<tr>
<td></td>
<td>NCT01182441 Evaluation of the Watchman LAA closure device in patients with atrial fibrillation versus long term warfarin therapy</td>
<td>475</td>
<td>Aug 2017</td>
</tr>
<tr>
<td></td>
<td>NCT02426944 Left Atrial Appendage Closure vs Novel Anticoagulation Agents in Atrial Fibrillation</td>
<td>400</td>
<td>May 2020</td>
</tr>
<tr>
<td></td>
<td>NCT01628068 Efficacy of Left Atrial Appendage Closure After Gastrointestinal Bleeding</td>
<td>120</td>
<td>Jul 2014</td>
</tr>
<tr>
<td></td>
<td>NCT01118299 AMPLATZER Cardiac Plug Clinical Trial</td>
<td>3000</td>
<td>Not approved/cleared</td>
</tr>
</tbody>
</table>

NCT: national clinical trial.

Summary of Evidence
For individuals who have AF who are at increased risk for embolic stroke who receive the Watchman percutaneous left atrial appendage closure (LAAC) device, the evidence includes 2 RCTs and meta-analyses of these trials. Relevant outcomes are overall survival, morbidity events, and treatment-related morbidity. The most relevant evidence comes from 2 industry-sponsored RCTs that compared the Watchman device with anticoagulation. One trial reported noninferiority on a composite outcome of stroke, cardiovascular/unexplained death, or systemic embolism after 2 years of follow-up, with continued benefits with the Watchman device after 4 years of follow-up. The second trial did not demonstrate noninferiority for the same composite outcome, but did demonstrate noninferiority of the Watchman device to warfarin for late ischemic stroke and systemic embolization. Patient-level meta-analyses of the 2 trials reported that the Watchman device is noninferior to warfarin on the composite outcome of stroke, systemic embolism, and cardiovascular death. Also, the Watchman was associated with a higher periprocedural risk of bleeding and ischemic stroke but a lower risk of hemorrhagic stroke over the long term. The published evidence indicates that the Watchman device is efficacious in preventing stroke for patients with AF who are at increased risk for embolic stroke. When it is determined on an individualized basis that the long-term risk of systemic anticoagulation exceeds the procedural risk of device implantation, the net health outcome will be improved. The evidence is sufficient to determine qualitatively that the technology results in a meaningful improvement in the net health outcome.

For individuals who have AF who are at increased risk for embolic stroke who receive a percutaneous LAAC device other than the Watchman device (eg, the Lariat, Amplatzer, and PLAATO devices), the evidence includes uncontrolled case series. Relevant outcomes are overall survival, morbidity events, and treatment-related morbidity. Case series of these devices have reported high procedural success, but also
Percutaneous Left-Atrial Appendage Closure Devices for Stroke Prevention in Atrial Fibrillation

Policy # 00296
Original Effective Date: 05/18/2011
Current Effective Date: 04/19/2017

numerosous complications. In addition, these devices do not have the U.S. FDA approval for LAAC. The evidence is insufficient to determine the effects of the technology on health outcomes.

References

©2017 Blue Cross and Blue Shield of Louisiana
An independent licensee of the Blue Cross and Blue Shield Association
No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without permission from Blue Cross and Blue Shield of Louisiana.
Percutaneous Left-Atrial Appendage Closure Devices for Stroke Prevention in Atrial Fibrillation

Policy # 00296
Original Effective Date: 05/18/2011
Current Effective Date: 04/19/2017

Percutaneous Left-Atrial Appendage Closure Devices for Stroke Prevention in Atrial Fibrillation

Policy # 00296
Original Effective Date: 05/18/2011
Current Effective Date: 04/19/2017

Policy History
Original Effective Date: 05/18/2011
Current Effective Date: 04/19/2017

05/05/2011 Medical Policy Committee review
05/18/2011 Medical Policy Implementation Committee approval. New policy.
05/03/2012 Medical Policy Committee review
05/16/2012 Medical Policy Implementation Committee approval. Coverage eligibility unchanged.
05/02/2013 Medical Policy Committee review
05/22/2013 Medical Policy Implementation Committee approval. Coverage eligibility unchanged.
05/01/2014 Medical Policy Committee review
05/21/2014 Medical Policy Implementation Committee approval. Percutaneous added to the title and coverage statement.
06/04/2015 Medical Policy Committee review
06/17/2015 Medical Policy Implementation Committee approval. No change to coverage.
04/07/2016 Medical Policy Committee review
04/20/2016 Medical Policy Implementation Committee approval. An FDA-approved left atrial appendage closure device is considered medically necessary with conditions.
01/01/2017 Coding update: Removing ICD-9 Diagnosis Codes and CPT Coding Update
04/06/2017 Medical Policy Committee review
04/19/2017 Medical Policy Implementation Committee approval. No change to coverage.

Next Scheduled Review Date: 04/2018

Coding
The five character codes included in the Blue Cross Blue Shield of Louisiana Medical Policy Coverage Guidelines are obtained from Current Procedural Terminology (CPT®), copyright 2016 by the American Medical Association (AMA). CPT is developed by the AMA as a listing of descriptive terms and five character identifying codes and modifiers for reporting medical services and procedures performed by physician.

The responsibility for the content of Blue Cross Blue Shield of Louisiana Medical Policy Coverage Guidelines is with Blue Cross and Blue Shield of Louisiana and no endorsement by the AMA is intended or should be implied. The AMA disclaims responsibility for any consequences or liability attributable or related to any use, nonuse or interpretation of information contained in Blue Cross Blue Shield of Louisiana Medical Policy Coverage Guidelines. Fee schedules, relative value units, conversion factors and/or related components are not assigned by the AMA, are not part of CPT,
Percutaneous Left-Atrial Appendage Closure Devices for Stroke Prevention in Atrial Fibrillation

Policy # 00296
Original Effective Date: 05/18/2011
Current Effective Date: 04/19/2017

and the AMA is not recommending their use. The AMA does not directly or indirectly practice medicine or dispense medical services. The AMA assumes no liability for data contained or not contained herein. Any use of CPT outside of Blue Cross Blue Shield of Louisiana Medical Policy Coverage Guidelines should refer to the most current Current Procedural Terminology which contains the complete and most current listing of CPT codes and descriptive terms. Applicable FARS/DFARS apply.

CPT is a registered trademark of the American Medical Association.

Codes used to identify services associated with this policy may include (but may not be limited to) the following:

<table>
<thead>
<tr>
<th>Code Type</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPT</td>
<td>Code deleted eff 1/1/17: 0281T</td>
</tr>
<tr>
<td></td>
<td>New code eff 1/1/17: 33340</td>
</tr>
<tr>
<td>HCPCS</td>
<td>No codes</td>
</tr>
<tr>
<td>ICD-10 Diagnosis</td>
<td>All related diagnoses</td>
</tr>
</tbody>
</table>

*Investigational – A medical treatment, procedure, drug, device, or biological product is Investigational if the effectiveness has not been clearly tested and it has not been incorporated into standard medical practice. Any determination we make that a medical treatment, procedure, drug, device, or biological product is Investigational will be based on a consideration of the following:

A. Whether the medical treatment, procedure, drug, device, or biological product can be lawfully marketed without approval of the U.S. FDA and whether such approval has been granted at the time the medical treatment, procedure, drug, device, or biological product is sought to be furnished; or

B. Whether the medical treatment, procedure, drug, device, or biological product requires further studies or clinical trials to determine its maximum tolerated dose, toxicity, safety, effectiveness, or effectiveness as compared with the standard means of treatment or diagnosis, must improve health outcomes, according to the consensus of opinion among experts as shown by reliable evidence, including:

1. Consultation with the Blue Cross and Blue Shield Association technology assessment program (TEC) or other nonaffiliated technology evaluation center(s);
2. Credible scientific evidence published in peer-reviewed medical literature generally recognized by the relevant medical community; or
3. Reference to federal regulations.

**Medically Necessary (or “Medical Necessity”) - Health care services, treatment, procedures, equipment, drugs, devices, items or supplies that a Provider, exercising prudent clinical judgment, would provide to a patient for the purpose of preventing, evaluating, diagnosing or treating an illness, injury, disease or its symptoms, and that are:

A. In accordance with nationally accepted standards of medical practice;
B. Clinically appropriate, in terms of type, frequency, extent, level of care, site and duration, and considered effective for the patient's illness, injury or disease; and
C. Not primarily for the personal comfort or convenience of the patient, physician or other health care provider, and not more costly than an alternative service or sequence of services at least as likely to produce equivalent therapeutic or diagnostic results as to the diagnosis or treatment of that patient's illness, injury or disease.

For these purposes, "nationally accepted standards of medical practice" means standards that are based on credible scientific evidence published in peer-reviewed medical literature generally recognized by the relevant medical community, Physician Specialty Society recommendations and the views of Physicians practicing in relevant clinical areas and any other relevant factors.

†† Indicated trademarks are the registered trademarks of their respective owners.

NOTICE: Medical Policies are scientific based opinions, provided solely for coverage and informational purposes. Medical Policies should not be construed to suggest that the Company recommends, advocates, requires, encourages, or discourages any particular treatment, procedure, or service, or any particular course of treatment, procedure, or service.