Pharmacogenomic and Metabolite Markers for Patients Treated with Thiopurines

Policy # 00237
Original Effective Date: 04/15/2009
Current Effective Date: 11/21/2018

Applies to all products administered or underwritten by Blue Cross and Blue Shield of Louisiana and its subsidiary, HMO Louisiana, Inc. (collectively referred to as the "Company"), unless otherwise provided in the applicable contract. Medical technology is constantly evolving, and we reserve the right to review and update Medical Policy periodically.

When Services Are Eligible for Coverage
Coverage for eligible medical treatments or procedures, drugs, devices or biological products may be provided only if:
- Benefits are available in the member’s contract/certificate, and
- Medical necessity criteria and guidelines are met.

Based on review of available data, the Company may consider a one-time genotypic or phenotypic analysis of the enzyme thiopurine methyltransferase (TPMT) in patients beginning therapy with azathioprine (AZA), mercaptopurine (6-MP) or thioguanine (6-TG) or in patients on thiopurine therapy with abnormal complete blood count (CBC) results that do not respond to dose reduction to be eligible for coverage.

When Services Are Considered Investigational
Coverage is not available for investigational medical treatments or procedures, drugs, devices or biological products.

Based on review of available data, the Company considers genotypic and/or phenotypic analysis of the enzyme thiopurine methyltransferase (TPMT) in all other situations to be investigational.*

Based on review of available data, the Company considers analysis of the metabolite markers of azathioprine (AZA) and mercaptopurine (6-MP), including 6-methyl-mercaptopurine ribonucleotides (6-MMRP) and 6-thioguanine nucleotides (6-TGN) to be investigational.*

Background/Overview
THIOPURINES
Thiopurines or purine analogues are immunomodulators. They include azathioprine (Imuran), mercaptopurine (6-MP; Purinethol), and thioguanine (6-TG; Tabloid). Thiopurines are used to treat malignancies, rheumatic diseases, dermatologic conditions, and irritable bowel disease, and are used in solid organ transplantation. They are considered an effective immunosuppressive treatment of irritable bowel disease, particularly in patients with corticosteroid-resistant disease. However, use of thiopurines is limited by both its long onset of action (3-4 months) and drug toxicities, which include hepatotoxicity, bone marrow suppression, pancreatitis, and allergic reactions.

Pharmacogenomics
Thiopurines are converted to 6-MP in vivo, where it is subsequently metabolized to 2 active metabolites: either 6-thioguanine nucleotides (6-TGN) by the inosine-5'-monophosphate dehydrogenase (IMPDH)
Pharmacogenomic and Metabolite Markers for Patients Treated with Thiopurines

Policy # 00237
Original Effective Date: 04/15/2009
Current Effective Date: 11/21/2018

enzyme; or to 6-methyl-mercaptopurine ribonucleotides (6-MMPR) by the thiopurine methyltransferase (TPMT) enzyme. TPMT also converts 6-MP into an inactive metabolite, 6-methyl-mercaptopurine. 6-TGNs are considered cytotoxic and thus are associated with bone marrow suppression, while 6-MMPR is associated with hepatotoxicity. In population studies, the activity of the TPMT enzyme has been shown to be trimodal, with 90% of subjects having high activity, 10% intermediate activity, and 0.3% with low or no activity. In patients with intermediate-to-low activity, the metabolism of 6-MP is shunted toward the IMPDH pathway with greater accumulation of 6-TGN; these patients are considered at risk for myelotoxicity (ie, bone marrow suppression).

This variation in TPMT activity has been related to 3 distinct TPMT variants and has permitted the development of TPMT genotyping based on a polymerase chain reaction. For example, patients with high TPMT activity are found to have 2 normal (wild-type) TPMT alleles; those with intermediate activity are heterozygous (ie, have a variant on 1 chromosome), while those with low TPMT activity are homozygous for TPMT variants (ie, a variant is found on both chromosomes). Genetic analysis has been explored as a technique to identify patients at risk for myelotoxicity; those with intermediate TPMT activity may be initially treated with lower doses of thiopurines, while those with low TPMT activity may not be good candidates for thiopurine therapy.

TPMT activity can also be measured by phenotypic testing. Phenotypic testing determines the level of thiopurine nucleotides or TPMT activity in erythrocytes and can also be informative. Caution must be taken with phenotyping, because some coadministered drugs can influence the measurement of TPMT activity in blood, and recent blood transfusions will misrepresent a patient’s actual TPMT activity.

Prospective TPMT genotyping or phenotyping may help identify patients at increased risk of developing severe, life-threatening myelotoxicity.

Metabolite Markers
Monitoring of thiopurine therapy has been based on clinical assessment of response in addition to monitoring blood cell counts, liver function, and pancreatic function tests. However, there has been interest in monitoring intracellular levels of thiopurine metabolites (ie, 6-TGN, 6-MMPR) to predict response and complications, with the ultimate aim of tailoring drug therapy to each individual patient.

While genotyping and phenotyping of TPMT would only be performed once, metabolite markers might be tested multiple times during the course of the disease to aid in determining the initial dose and also evaluate any ongoing dosing.

FDA or Other Governmental Regulatory Approval
U.S. Food and Drug Administration (FDA)
Clinical laboratories may develop and validate tests in-house and market them as a laboratory service; laboratory-developed tests must meet the general regulatory standards of the Clinical Laboratory Improvement Amendments. Several thiopurine genotype, phenotype, and metabolite tests are available under the auspices of the Clinical Laboratory Improvement Amendments. Laboratories that offer laboratory-
Pharmacogenomic and Metabolite Markers for Patients Treated with Thiopurines

Policy # 00237
Original Effective Date: 04/15/2009
Current Effective Date: 11/21/2018

developed tests must be licensed by the Clinical Laboratory Improvement Amendments for high-complexity testing. To date, the U.S. Food and Drug Administration has chosen not to require any regulatory review of this test.

Prometheus®†, a commercial laboratory in San Diego, offers thiopurine genotype, phenotype, and metabolite testing for those on thiopurine therapy. The tests are referred to as Prometheus TPMT Genetics, Prometheus TMPT enzyme, and Prometheus thiopurine metabolites, respectively. Other laboratories that offer TPMT genotyping include Quest Diagnostics (TPMT Genotype; Madison, NJ), ARUP Laboratories (TPMT DNA; Salt Lake City, UT), and Specialty Laboratories (TPMT GenoTypR™; Valencia, CA), PreventionGenetics (TPMT Deficiency via the TPMT Gene; Marshfield, WI), Genelex (TPMT; Seattle, WA), and Fulgent Genetics (TPMT; Temple City, CA).

Centers for Medicare and Medicaid Services (CMS)
There is no national coverage determination. In the absence of a national coverage determination, coverage decisions are left to the discretion of local Medicare carriers.

Rationale/Source
Validation of the clinical use of any genetic test focuses on 3 main principles: (1) analytic validity, which refers to the technical accuracy of the test in detecting a variant that is present or in excluding a variant that is absent; (2) clinical validity, which refers to the diagnostic performance of the test (sensitivity, specificity, positive and negative predictive values) in detecting clinical disease; and (3) clinical utility (ie, how the results of the diagnostic test will be used to change management of the patient and whether these changes in management lead to clinically important improvements in health outcomes). These factors are discussed next, both for pharmacogenomics and metabolite markers. The following is a summary of the key literature to date.

GENOTYPE, PHENOTYPE, AND METABOLITE MARKER TESTING FOR PATIENTS TREATED WITH THIOPURINES

Clinical Context and Test Purpose

The purpose of testing for thiopurine methyltransferase (TPMT) function or metabolite marker in patients treated with thiopurines is:

- to identify individuals likely or unlikely to be at high risk of adverse drug reactions (ADRs) from thiopurines; or
- to optimize dose selection or frequency by identifying individuals who are likely to require higher or lower doses of a drug.
Pharmacogenomic and Metabolite Markers for Patients Treated with Thiopurines

Policy # 00237
Original Effective Date: 04/15/2009
Current Effective Date: 11/21/2018

The questions addressed in this evidence review are: (1) Is there evidence that testing for TMPT function or metabolite marker has clinical validity?; and (2) Does patient management change in a way that potentially improves outcomes as a result of testing for TMPT function or metabolite marker?

The following PICOTS were used to select literature to inform this review.

Patients
The relevant population of interest is patients with a wide variety of clinical conditions such as malignancies, rheumatic diseases, dermatologic conditions, irritable bowel disease (IBD), and those undergoing solid organ transplants.

Interventions
Commercial testing for metabolite marker or TPMT function is available from multiple labs and companies that include TPMT function testing as part of a panel test.

Comparators
The comparator of interest is standard management without TMPT function or metabolite marker testing.

Outcomes
Specific outcomes of interest are listed in Table 1.

Table 1. Outcomes of Interest for Individuals Undergoing TPMT Function Testing

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symptoms</td>
<td>• Reduce or eliminate steroid use, which can result in substantial morbidity due to side effects</td>
</tr>
<tr>
<td>Morbid events</td>
<td>• Reduce or eliminate the incidence of toxicity associated with thiopurines such as bone marrow toxicity, hepatotoxicity, pancreatitis, or other adverse drug reactions (eg, gastric intolerance, skin reactions) that may avoid potential downstream morbidity and hospitalization due to adverse events.</td>
</tr>
<tr>
<td>Change in disease status</td>
<td>Crohn's Disease Activity Scale</td>
</tr>
</tbody>
</table>

The potential beneficial outcomes of primary interest would be avoidance or minimization of toxicity associated with thiopurine administration.

The potential harmful outcomes are those resulting from a false test result. False-positive or false-negative test results can lead to under- or overtreatment with thiopurines including potential loss of therapeutic benefit from undertreatment or adverse events from overtreatment or possibly from an alternative treatment other than thiopurines.
Pharmacogenomic and Metabolite Markers for Patients Treated with Thiopurines

Policy # 00237
Original Effective Date: 04/15/2009
Current Effective Date: 11/21/2018

Timing
Testing is likely to be done prior to initiation of therapy with thiopurines but may also be done during treatment with thiopurines.

Setting
Thiopurines are used in a wide variety of clinical conditions and therefore may be prescribed by a wide variety of specialists such as rheumatologists, gastroenterologists, oncologist, dermatologists, and transplant surgeons (or team). Most patients are likely to be tested in an outpatient setting.

Analytic Validity

Genotype and Phenotype Testing
The genotypic analysis of the TPMT gene is based on well-established polymerase chain reaction technology to detect 3 distinct variants. Currently, 3 alleles (TPMT*2, TPMT*3A, TPMT*3C) account for about 95% of subjects with reduced TPMT enzyme activity. Subjects homozygous for these alleles are TPMT-deficient and those heterozygous for these alleles have variable TPMT (low or intermediate) activity. A 2012 study from Sweden addressed the concordance between TPMT genotyping and phenotyping. The investigators evaluated data from 7195 unselected and consecutive TPMT genotype and phenotype tests. The genotype tests examined the 3 most common TPMT variants, previously noted. TPMT genotyping identified 89% as TPMT wild-type, 704 (10%) as TPMT heterozygous, and 37 (0.5%) as TPMT homozygous. The overall agreement between genotyping and phenotyping was 95%. Genotyping alone would have misclassified 3 (8%) of 37 homozygous patients as heterozygous; these 3 subjects were found to have uncommon mutations. All three had low TPMT activity. The phenotype test would have misclassified 4 (11%) of 37 of homozygous patients because they had test results above the cutoff level for low TPMT activity (<2.5 U/mL red blood cells).

Metabolite Marker Testing
Metabolite markers have been assessed using high-performance liquid chromatography technology. It would be optimal to assess metabolite markers in peripheral leukocytes because they reflect the status of bone marrow precursors. However, it is technically easier to measure metabolites in red blood cells than in leukocytes.

Section Summary: Analytic Validity
TPMT genotypic analysis via polymerase chain reaction technology is expected to have high performance. Concordance between genotypic and phenotypic analysis for TPMT activity is high in at least one analysis. The analytic validity of metabolite marker analysis using high-performance liquid chromatography technology is optimal.
Clinical Validity

**Genotype and Phenotype Testing**

Several systematic reviews of studies on the diagnostic performance of *TPMT* genotyping have been published. Among the most recent was a 2011 review by Booth et al sponsored by the Agency for Healthcare Research and Quality. Nineteen studies on test performance were identified; most were cross-sectional or prospective observational studies and approximately 70% included patients with IBD. Among the 1735 total patients, 184 were heterozygous, and 16 were homozygous for variant alleles, a small subsample of subjects with variant alleles. Pooled analysis of data from 19 studies found a sensitivity of 79.9% (95% confidence interval [CI], 74.8% to 84.6%) for correctly identifying subjects with subnormal (intermediate or low) enzymatic activity. The specificity of the wild-type genotype for correctly identifying subjects with normal or high enzymatic activity approached 100%. Seventeen studies addressed the association between *TPMT* status and thiopurine toxicity. The studies included 2211 patients, 357 of whom had intermediate and 74 had low enzymatic activity. In a pooled analysis of 3 studies (92 patients, 10 events), there were greater odds of myelotoxicity with low *TPMT* enzymatic activity than intermediate activity (pooled odds ratio [OR], 14.5; 95% CI, 2.78 to 76.0). Similarly, in a pooled analysis of 3 studies (403 patients, 29 events), there were greater odds of myelotoxicity with low *TPMT* enzymatic activity than with normal levels (pooled OR=19.1; 95% CI, 4.6 to 80.2). It is worth noting that the CIs were wide due to few events and small sample sizes.

Another systematic review published in 2011, by Donnan et al, identified 17 studies that reported the performance characteristics of *TPMT* genotyping tests (12 studies) and phenotyping (6 studies) compared with a reference standard. No true criterion standard was available. The enzymatic test was used as the reference standard in 9 studies, and the remainder used a genotyping test; 3 studies compared 2 methods of genotyping. All studies used a method of genotyping as either the investigational test or the reference standard; the tests varied somewhat in the number and type of variants they were designed to detect. Sixteen of 17 studies either reported sensitivity and specificity, or reported sufficient data for these measures to be calculated. Only 3 studies considered confounding factors (eg, concurrent medications, blood transfusions) in their exclusion criteria. Reviewers did not pool study findings. In the included studies, sensitivity of enzymatic tests ranged from 92% to 100% and the specificity ranged from 86% to 98%. The sensitivity of the genotype tests ranged from 55% to 100% and the specificity from 94% to 100%. In general, the enzymatic tests had a high sensitivity and a low positive predictive value when genotype tests were used as the reference standard. Genotype tests showed a lower sensitivity and a high positive predictive value when enzymatic tests were used as the criterion standard. The inconsistent use of a reference standard complicated interpretation of the findings.

A 2015 meta-analysis by Liu et al evaluated the relation between *TPMT* variants and adverse drug reactions (ADRs) in patients with IBD taking thiopurine drugs. This 2015 analysis updated a 2010 meta-analysis by Dong et al, and findings for both were similar. The Liu review included studies that compared *TPMT* variant frequencies in patients who did and did not experience ADRs. Reviewers initially screened 353 articles, and 14 studies (total N=2276 IBD patients) were ultimately found to meet eligibility criteria. In a meta-analysis of data from 10 studies, 67 (14.1%) of 476 patients with and 57 (4.8%) of 1192 patients...
without an ADR were TPMT heterozygous or homozygous. The pooled odds was 3.36 (95% CI, 1.82 to 6.19), and the difference between groups was statistically significant. In analyses of specific adverse reactions, there were statistically significant associations between the presence of TPMT alleles and bone marrow toxicity, but not hepatotoxicity, pancreatitis, or other ADRs (e.g., gastric intolerance, skin reactions). The number of events in some analyses was relatively small, and these studies may have been underpowered to detect differences between groups. For example, 2 (3.3%) of 62 IBD patients with pancreatitis were TPMT heterozygous or homozygous compared with 116 (7.7%) of 1500 patients without pancreatitis (OR=0.97; 95% CI, 0.38 to 2.48).

In 2016, Roy et al reported on the association between TPMT genotype or phenotype tests and a reference standard, such that it was possible to determine sensitivity, specificity, positive predictive value, negative predictive value, or concordance, in patients receiving thiopurines. Sixty-six studies were included and appraised for quality. Based on data from 25 studies reporting on test performance on genotyping, the calculated sensitivity for TPMT genotyping to detect a heterozygous or homozygous TPMT variant ranged from 13.4% to 100.0%, while the specificity ranged from 90.9% to 100.0%. A smaller 2016 systematic review by Zur et al reported higher sensitivities and specificities for TPMT genotyping.

No systematic reviews of studies on TPMT genotyping or phenotyping tests in patients undergoing solid organ transplantation were identified. One study identified addressed this population and provided support for genotype analysis. In 2013, Liang et al published data on 93 heart transplant patients treated with azathioprine (AZA). Eighty-three patients had the wild-type genotype, and 10 were heterozygous for variants. The TMPT activity level was significantly lower in the heterozygous subjects (13.1 U/mL) than in subjects with the wild-type genotype (21 U/mL red blood cells; p<0.001). Moreover, there was a significantly higher rate of severe rejection in heterozygous subjects (7/10 [70%]) than in subjects with a wild-type genotype (12/83 [15%]; p<0.001). In addition, heterozygous subjects developed severe rejection earlier than wild-type subjects, at a median of 29 days vs 36 days (p=0.046). There were no statistically significant associations between TMPT genotype and the development of hepatotoxicity or leukopenia.

**Metabolite Marker Testing**

Studies on the diagnostic accuracy of metabolite testing have focused on assessing the association between metabolite levels and disease remission or ADRs. One systematic review was identified; it focused on studies conducted in the pediatric population. In a literature search through January 2013, Konidari et al (2014) identified 15 studies (total N=1026 children with IBD). There were 9 retrospective, 6 prospective case series, and no randomized controlled trials (RCTs). Reviewers did not pool findings. Among studies that evaluated the association between metabolite markers and clinical remission, five found significantly higher rates of remission with higher levels of 6-thioguanine nucleotides (6-TGN), and six did not find significant differences in 6-TGN levels between responders and nonresponders. Moreover, 5 studies found significant associations between 6-methyl-mercaptopurine ribonucleotides (6-MMMPR) levels and hepatotoxicity, while three did not.

Several studies have considered the optimal therapeutic cutoff level of metabolites. A 2000 study by Dubinsky et al (N=92 patients) and a 2012 study by Gilissen et al (N=100 patients) both found that 235
pmol/8×10^8 was the optimal therapeutic 6-TGN cutoff. A 2012 Dhaliwal studied 70 patients with autoimmune hepatitis who were in remission. Levels of 6-TGN were significantly higher in patients who maintained remission compared with those who did not (mean, 237 pmol/8×10^8 vs 177 pmol/8×10^8; p=0.025). According to receiver operating curve analysis, a cutoff of 220 pmol/8×10^8 best discriminated between patients who did and did not stay in remission.

A 2014 study by Kopylov et al found that 6-methyl-mercaptopurine (6-MMP)/6-TGN ratios performed better than 6-TGN levels for predicting relapse in pediatric patients with Crohn disease. The study included 237 patients treated with a thiopurine for at least 3 months. A total of 7.7% were TPMT heterozygous; none was TPMT homozygous. Patients were followed for 18 months; mercaptopurine (6-MP) metabolite concentration levels were measured every 3 to 4 months, or at the time of a clinical relapse or adverse event. The investigators found that 6-MMP/6-TGN ratios between 4 and 24 were significantly protective against relapse; 6-TGN levels alone were not significantly associated with relapse rates.

Wong et al (2017) reported on the result of a post hoc analysis of the TOPIC trial to address the predictive value of 6-MMPR concentrations 1 week after treatment initiation for development of hepatotoxicity during the first 20 weeks of treatment. They reported that, in more than 80% of patients, hepatotoxicity could be explained by elevated 6-MMPR concentrations and the independent risk factors of age, sex, and body mass index, allowing personalized thiopurine treatment in IBD to prevent early failure. Placing 174 patients on a stable thiopurine dose showed that those exceeding the 6-MMPR threshold of 3615 pmol/8 X10^8 erythrocytes were more likely to have hepatotoxicity (OR=3.8; 95% CI, 1.8 to 8.0).

Section Summary: Clinical Validity
Systematic reviews of genotype and phenotype testing have shown a pooled sensitivity of about 80% and specificity near 100% for identifying patients with subnormal enzymatic activity. In addition, studies have found a greater likelihood of ADRs with low TPMT activity. The evidence is limited by relatively small numbers of events and wide CIs.

The association between metabolite markers and adverse drug events was less consistent, although a post hoc analysis of a large RCT showed that metabolite markers could be used to predict the likelihood of hepatotoxicity with thiopurines.

Clinical Utility
The use of pharmacogenomics and thiopurine metabolite testing creates the possibility of tailoring a drug regimen for each patient, with the ultimate goal of attaining disease remission and eliminating steroid therapy. The preferred study design would compare patient management (eg, drug choice) and health outcomes in patients managed with and without testing.

Genotype and Phenotype Testing
Three RCTs have compared TPMT testing with no testing and empirical weight-based thiopurine dosing. Genotype testing was used in 2 studies while the remaining RCT used the phenotype enzymatic activity. In both RCTs using genotype testing, patients with a normal enzyme and genotype started full-dose
thiopurine, while those with intermediate enzymatic activity/heterozygous genotype had a 50% dose reduction. Those with low or absent enzyme activity or homozygous genotype were not given thiopurine or were given a reduced dose at 0% to 10% of the initiation dose. The 3 RCTs are discussed below.

In 2015, Coenen et al published results of the TOPIC trial, which randomized 761 patients with IBD across 30 centers to receive empirical weight-based thiopurine dosing (n=378) or genotype-guided dosing (n=405). The trial did not meet the primary end point of showing a statistically significant reduction in hematologic ADR among the group that received genotype-guided thiopurines dosing compared with empirical weight-based dosing. After 20 weeks, the percentage of patients with hematologic ADRs was 7.4% vs 7.9% in the genotype-based dosing vs empirical weight-based thiopurine dosing, with a relative risk of 0.93 (95% CI, 0.57 to 1.52). However, among TPMT carriers, only 1 (2.6%) of 39 patients developed a hematologic ADR compared with 8 (22.9%) of 35 patients in the control group (relative risk, 0.11; 95% CI, 0.01 to 0.85). While the results of this secondary analysis were statistically significant, the event rate was low with a wide CI indicating imprecise estimates. Further, there was no statistically significant difference in clinical outcome between the groups in an intention-to-treat analysis at 20 weeks after treatment initiation (p=0.18 for Crohn’s Disease Activity Scale score; p=0.14 for ulcerative colitis). In summary, 200 patients would have to be genotyped to avoid 1 episode of a hematologic ADR (7.4% vs 7.9%; ie, 0.5% risk difference). The number needed to treat to avoid 1 episode of a hematologic ADR would be 5 for at-risk individuals (risk difference in patients with a genetic variant, 20.3; 2.6% vs 22.9%).

In 2011, Newman et al, reported on the results of the TARGET trial, which randomized 333 IBD patients to genotype-guided dosing for empirical weight-based thiopurine dosing. Data were available for 322 (97%) of 333 patients at 4 months. The trial did not meet the primary endpoint of showing a statistically significant reduction in the proportion of patients stopping AZA treatment due to any ADR in genotype-guided dosing arm compared with empirical weight-based dosing. The respective proportion of patients in both arms who stopped taking AZA because of an ADR was 29% (47/163) and 28% (44/159; p=0.74), respectively. The trial included few patients with non-wild-type gene variants (7 heterozygous patients in the genotyping group; 2 heterozygous patients, 1 homozygous patient in the nongenotyping group) and therefore was underpowered to detect a difference of the impact of TPMT genotyping.

Sayani et al (2005) reported on the results of a small RCT (N=29) in which IBD patients were randomized to the TPMT assay (n=15) or no assay (n=14) prior to AZA dosing. All 14 patients who received TPMT assay were found to have normal TPMT levels and therefore commenced AZA at 2.5 mg/kg/d while the individuals in the control arm underwent an upward dose-titration protocol to a target dose of 2.5 mg/kg/d. While the trial was small and did not report power calculations, results showed that 53% (8/15) and 57% (8/14) in the no assay and TPMT assay groups, respectively, withdrew as a result of AZA-induced adverse events.

Several prospective studies have examined variations in the efficacy of medication by patient TPMT status. For example, in a study that involved 131 patients with IBD, investigators from Europe did not find that the choice of AZA or 6-MP dose based on red blood cells TPMT activity prevented myelotoxicity; no patients in this study exhibited low activity. In a 2008 study from New Zealand, Gardiner et al noted that initial target doses to attain therapeutic levels in patients with IBD ranged from 1 to 3 mg/kg/d in intermediate
Pharmacogenomic and Metabolite Markers for Patients Treated with Thiopurines

Policy # 00237
Original Effective Date: 04/15/2009
Current Effective Date: 11/21/2018

(heterozygous) and normal (wild-type) metabolizers. This conclusion was based on analysis of 52 patients with IBD who were started on AZA or 6-MP and followed for 9 months while 6-TGN levels and clinical status were evaluated. This study suggests that knowledge of TPMT activity can assist with initial dosing. In a 2006 study from Europe that included 394 patients with IBD, Gisbert et al. found the probability of myelotoxicity was 14.3% in the TPMT intermediate group compared with 3.5% in groups with high (wild-type) activity. Authors concluded that determining TPMT activity before initiating treatment with AZA could minimize the risk of myelotoxicity.

Metabolite Marker Testing
In 2013, Kennedy et al. retrospectively reviewed medical records of patients who had undergone metabolite testing in South Australia. The analysis reported on 151 patients with IBD who had been taking a thiopurine for at least 4 weeks, underwent at least 1 metabolite test, and were managed at a study site. The 151 patients had a total of 157 tests. Eighty (51%) of 157 tests were done because of flare or lack of medication efficacy, 18 (12%) were for adverse events, and 54 (34%) tests were routine. Forty-four (55%) of the 80 patients who had a metabolite test due to flare or lack of efficacy had better outcomes after the test was performed. Outcomes also improved after testing for 5 (28%) of 18 patients with an ADR to a thiopurine. For patients who had routine metabolite tests, 7 (13%) of 54 had better outcomes following testing. The rate of benefit was significantly higher in patients tested because of flare or lack of efficacy compared with those who underwent routine metabolite testing (p<0.001). Changes in patient management included medication dose adjustments, change in medication, and surgical treatment. The study lacked a control group, and thus, outcomes cannot be compared with patients managed without metabolite testing. It is possible that, even in the absence of metabolite testing, patients who were not seeing a benefit or who were experiencing ADRs would have had their treatments adjusted, which could have improved outcomes.

Other relevant studies have examined the association between drug dose and the level of metabolite markers. In general, studies have reported that there is only weak correlation between metabolite levels and drug dose. One 2013 retrospective study, however, found a positive correlation between levels of 6-TGN and 6-MMP and weight-based AZA dose in children with IBD. In addition, studies have reported that levels obtained with testing are often outside of the therapeutic range. For example, Gearry et al. (2005) reported that 41% of values were within the therapeutic range and Armstrong et al. (2011) found that 32% of values were within therapeutic levels.

Section Summary: Clinical Utility
Three RCTs (total N=1145 patients) were identified that compared TPMT genotype and phenotype testing with no testing and empirical weight-based thiopurine dosing. In these studies, only 0.17% (n=2) were homozygous. Genotype testing was used in 2 studies while one used the phenotype enzymatic activity. Of the 3 RCTs, only the TOPIC trial with a large sample (N=761) was adequately powered while the remaining 2 were underpowered. Hematologic adverse events and treatment discontinuation were used as surrogate outcomes for benefits of TPMT testing. There were no significant differences in either outcome based on TPMT testing and treatment discontinuation. Additionally, there was also no significant difference in clinical remission in these groups based on TPMT testing in the largest RCT. However, secondary analysis of individual who were intermediate enzymatic activity/heterozygous genotype or homozygous genotype/low
enzymatic activity showed that TPMT testing to guide dosing was associated with an 89% risk reduction of hematologic adverse events. In conclusion, although the risk of harm from not testing a TPMT level before initiating therapy is minimal (indicated by a large number needed to treat) in most cases, there is considerable risk of harm (indicated by a small number needed to harm) in the 0.3% patients who are homozygous genotype or have low/absent TPMT enzymatic activity.

The evidence for metabolite marker testing is limited to retrospective studies that report a benefit of metabolite test in terms of better outcomes. However, due to lack of data from RCTs, outcomes cannot be compared with patients managed without metabolite testing.

**SUMMARY OF EVIDENCE**

For individuals who are treated with thiopurines who receive TPMT genotype analysis or TPMT phenotype analysis, the evidence includes studies of diagnostic performance, systematic reviews, and randomized controlled trials. Relevant outcomes are symptoms, morbid events, and change in disease status. A large number of studies have assessed the diagnostic performance of TMPT genotyping and phenotyping tests. A meta-analysis found a pooled sensitivity of about 80% and specificity near 100% for identifying patients with subnormal enzymatic activity. Three randomized controlled trials (total N=1145 patients) compared TPMT genotype/phenotype testing with no testing and empirical weight-based thiopurine dosing. There was no significant difference in the incidence of hematologic adverse events, treatment discontinuation rates, or clinical remission. However, secondary analysis of a small number of individuals who had intermediate enzymatic activity/heterozygous genotype or homozygous genotype/low enzymatic activity showed that TPMT testing to guide dosing was associated with statistically significant risk reduction in hematologic adverse events with a wide margin of error. In summary, 200 patients would have to be genotyped to avoid 1 episode of a hematologic adverse drug reaction (7.4% vs 7.9%; ie, 0.5% risk difference). The number needed to treat to avoid 1 episode of a hematologic adverse drug reaction would be 5 for at-risk individuals (risk difference in patients with a genetic variant, 20.3; 2.6% vs 22.9%). In addition, a small, inadequately powered randomized controlled trial that assessed phenotype TPMT testing found no difference in treatment discontinuation rates due to adverse drug reactions between the 2 arms. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

For individuals who are treated with thiopurines who receive azathioprine and/or 6-mercaptoprine metabolites analysis, the evidence includes a systematic review as well as prospective and retrospective studies. Relevant outcomes are symptoms, morbid events, and change in disease status. There is insufficient evidence from prospective studies to determine whether knowledge of metabolite marker status will lead to improved outcomes (primarily improved disease control and/or less adverse drug events). Findings for studies evaluating the association between metabolite markers and clinical remission are mixed, and no prospective comparative trials have compared health outcomes in patients managed using metabolite markers with current approaches to care. The evidence is insufficient to determine the effects of the technology on health outcomes.
Pharmacogenomic and Metabolite Markers for Patients Treated with Thiopurines

Policy # 00237
Original Effective Date: 04/15/2009
Current Effective Date: 11/21/2018

References

Pharmacogenomic and Metabolite Markers for Patients Treated with Thiopurines

Policy # 00237
Original Effective Date: 04/15/2009
Current Effective Date: 11/21/2018


Policy History
Original Effective Date: 04/15/2009
Current Effective Date: 11/21/2018

05/07/2009 Medical Director review
05/20/2009 Medical Policy Committee approval. New policy.
06/03/2010 Medical Policy Committee approval
06/16/2010 Medical Policy Implementation Committee approval. Policy title changed by taking out azathioprine (6-MP) and replacing it with “Thiopurines”. Policy statement changed to “a one-time genotypic or phenotypic analysis of the thiopurine methyltransferase (TPMT) gene in patients beginning therapy with azathioprine (AZA), mercaptopurine (6-MP) or thioguanine (6-TG) or in patients on thiopurine therapy with abnormal complete blood count (CBC) results that do not respond to dose reduction to be eligible for coverage.”
06/02/2011 Medical Policy Committee review
06/14/2012 Medical Policy Committee review
06/20/2012 Medical Policy Implementation Committee approval. Coverage eligibility unchanged.
01/11/2013 Codes updated.
06/06/2013 Medical Policy Committee review
06/05/2014 Medical Policy Committee review
06/18/2014 Medical Policy Implementation Committee approval. Coverage eligibility unchanged.
08/03/2015 Coding update: ICD10 Diagnosis code section added; ICD9 Procedure code section removed.
09/03/2015 Medical Policy Committee review
09/23/2015 Medical Policy Implementation Committee approval. Statement added that genotypic and/or phenotypic analysis of the enzyme TPMT is considered investigational in all other situations.
11/03/2016 Medical Policy Committee review
01/01/2017 Coding update: Removing ICD-9 Diagnosis Codes
11/02/2017 Medical Policy Committee review
04/01/2018 Coding update
11/08/2018 Medical Policy Committee review

©2018 Blue Cross and Blue Shield of Louisiana

Blue Cross and Blue Shield of Louisiana is an independent licensee of the Blue Cross and Blue Shield Association and incorporated as Louisiana Health Service & Indemnity Company.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without permission from Blue Cross and Blue Shield of Louisiana.
Pharmacogenomic and Metabolite Markers for Patients Treated with Thiopurines

Policy # 00237
Original Effective Date: 04/15/2009
Current Effective Date: 11/21/2018
Next Scheduled Review Date: 11/2019

Coding
The five character codes included in the Blue Cross Blue Shield of Louisiana Medical Policy Coverage Guidelines are obtained from Current Procedural Terminology (CPT®), copyright 2017 by the American Medical Association (AMA). CPT is developed by the AMA as a listing of descriptive terms and five character identifying codes and modifiers for reporting medical services and procedures performed by physician.

The responsibility for the content of Blue Cross Blue Shield of Louisiana Medical Policy Coverage Guidelines is with Blue Cross and Blue Shield of Louisiana and no endorsement by the AMA is intended or should be implied. The AMA disclaims responsibility for any consequences or liability attributable or related to any use, nonuse or interpretation of information contained in Blue Cross Blue Shield of Louisiana Medical Policy Coverage Guidelines. Fee schedules, relative value units, conversion factors and/or related components are not assigned by the AMA, are not part of CPT, and the AMA is not recommending their use. The AMA does not directly or indirectly practice medicine or dispense medical services. The AMA assumes no liability for data contained or not contained herein. Any use of CPT outside of Blue Cross Blue Shield of Louisiana Medical Policy Coverage Guidelines should refer to the most current Current Procedural Terminology which contains the complete and most current listing of CPT codes and descriptive terms. Applicable FARS/DFARS apply.

CPT is a registered trademark of the American Medical Association.

Codes used to identify services associated with this policy may include (but may not be limited to) the following:

<table>
<thead>
<tr>
<th>Code Type</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPT</td>
<td>81401</td>
</tr>
<tr>
<td></td>
<td>Code added eff 1/1/18: 0034U</td>
</tr>
<tr>
<td>HCPCS</td>
<td>No codes</td>
</tr>
<tr>
<td>ICD-10 Diagnosis</td>
<td>K50.00-K50.919, K50.90-K50.919, K51.00-K51.919, M06.00-M06.9, M08.00-M08.99, M12.00-M12.09</td>
</tr>
</tbody>
</table>

*Investigational – A medical treatment, procedure, drug, device, or biological product is Investigational if the effectiveness has not been clearly tested and it has not been incorporated into standard medical practice. Any determination we make that a medical treatment, procedure, drug, device, or biological product is Investigational will be based on a consideration of the following:

A. Whether the medical treatment, procedure, drug, device, or biological product can be lawfully marketed without approval of the U.S. Food and Drug Administration (FDA) and whether such approval has been granted at the time the medical treatment, procedure, drug, device, or biological product is sought to be furnished; or

B. Whether the medical treatment, procedure, drug, device, or biological product requires further studies or clinical trials to determine its maximum tolerated dose, toxicity, safety, effectiveness, or effectiveness as compared with the standard means of treatment or diagnosis, must improve health outcomes, according to the consensus of opinion among experts as shown by reliable evidence, including:

1. Consultation with the Blue Cross and Blue Shield Association technology assessment program (TEC) or other nonaffiliated technology evaluation center(s);
2. Credible scientific evidence published in peer-reviewed medical literature generally recognized by the relevant medical community; or
3. Reference to federal regulations.

©2018 Blue Cross and Blue Shield of Louisiana

Blue Cross and Blue Shield of Louisiana is an independent licensee of the Blue Cross and Blue Shield Association and incorporated as Louisiana Health Service & Indemnity Company.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without permission from Blue Cross and Blue Shield of Louisiana.
Pharmacogenomic and Metabolite Markers for Patients Treated with Thiopurines

Policy # 00237
Original Effective Date: 04/15/2009
Current Effective Date: 11/21/2018

**Medically Necessary (or “Medical Necessity”) - Health care services, treatment, procedures, equipment, drugs, devices, items or supplies that a Provider, exercising prudent clinical judgment, would provide to a patient for the purpose of preventing, evaluating, diagnosing or treating an illness, injury, disease or its symptoms, and that are:

A. In accordance with nationally accepted standards of medical practice;
B. Clinically appropriate, in terms of type, frequency, extent, level of care, site and duration, and considered effective for the patient's illness, injury or disease; and
C. Not primarily for the personal comfort or convenience of the patient, physician or other health care provider, and not more costly than an alternative service or sequence of services at least as likely to produce equivalent therapeutic or diagnostic results as to the diagnosis or treatment of that patient's illness, injury or disease.

For these purposes, “nationally accepted standards of medical practice” means standards that are based on credible scientific evidence published in peer-reviewed medical literature generally recognized by the relevant medical community, Physician Specialty Society recommendations and the views of Physicians practicing in relevant clinical areas and any other relevant factors.

‡ Indicated trademarks are the registered trademarks of their respective owners.

NOTICE: Medical Policies are scientific based opinions, provided solely for coverage and informational purposes. Medical Policies should not be construed to suggest that the Company recommends, advocates, requires, encourages, or discourages any particular treatment, procedure, or service, or any particular course of treatment, procedure, or service.