Progenitor Cell Therapy for the Treatment of Damaged Myocardium due to Ischemia

Policy # 00486
Original Effective Date: 12/16/2015
Current Effective Date: 12/19/2018

Applies to all products administered or underwritten by Blue Cross and Blue Shield of Louisiana and its subsidiary, HMO Louisiana, Inc. (collectively referred to as the “Company”), unless otherwise provided in the applicable contract. Medical technology is constantly evolving, and we reserve the right to review and update Medical Policy periodically.

Services Are Considered Investigational
Coverage is not available for investigational medical treatments or procedures, drugs, devices or biological products.

Based on review of available data, the Company considers progenitor cell therapy, including but not limited to skeletal myoblasts or hematopoietic cells as a treatment of damaged myocardium to be investigational.*

Based on review of available data, the Company considers infusion of growth factors (ie, granulocyte colony stimulating factor [GCSF]) as a technique to increase the numbers of circulating hematopoietic cells as treatment of damaged myocardium to be investigational.*

Background/Overview

ISCHEMIA
Ischemia is the most common cause of cardiovascular disease and myocardial damage in the developed world. Despite impressive advances in treatment, ischemic heart disease is still associated with high morbidity and mortality.

Treatment
Current treatments for ischemic heart disease seek to revascularize occluded arteries, optimize pump function, and prevent future myocardial damage. However, current treatments do not reverse existing heart muscle damage. Treatment with progenitor cells (ie, stem cells) offers potential benefits beyond those of standard medical care, including the potential for repair and/or regeneration of damaged myocardium. Potential sources of embryonic and adult donor cells include skeletal myoblasts, bone marrow cells, circulating blood–derived progenitor cells, endometrial mesenchymal stem cells (MSCs), adult testis pluripotent stem cells, mesothelial cells, adipose-derived stromal cells, embryonic cells, induced pluripotent stem cells, and bone marrow MSCs, all of which can differentiate into cardiomyocytes and vascular endothelial cells.

The mechanism of benefit after treatment with progenitor cells is not entirely understood. Differentiation of progenitor cells into mature myocytes and engraftment of progenitor cells into areas of damaged myocardium has been suggested in animal studies using tagged progenitor cells. However, there is controversy concerning whether injected progenitor cells engraft and differentiate into mature myocytes in humans to the degree that might result in clinical benefit. It also has been proposed that progenitor cells may improve perfusion to areas of ischemic myocardium. Basic science research has also suggested that...
injected stem cells secrete cytokines with antiapoptotic and proangiogenesis properties. Clinical benefit may result if these paracrine factors limit cell death from ischemia or stimulate recovery. For example, myocardial protection can occur through modulation of inflammatory and fibrogenic processes. Alternatively, paracrine factors may affect intrinsic repair mechanisms of the heart through neovascularization, cardiac metabolism, and contractility, increase in cardiomyocyte proliferation, or activation of resident stem and progenitor cells. The relative importance of these proposed paracrine actions depends on the age of the infarct (eg, cytoprotective effects in acute ischemia and cell proliferation in chronic ischemia). Investigation of the specific factors induced by administration of progenitor cells is ongoing.

There also are various potential delivery mechanisms for donor cells, encompassing a wide range of invasiveness. Donor cells can be delivered via thoracotomy and direct injection into areas of damaged myocardium. Injection of progenitor cells into the coronary circulation also is done using percutaneous, catheter-based techniques. Finally, progenitor cells may be delivered intravenously via a peripheral vein. With this approach, the cells must be able to target damaged myocardium and concentrate at the site of myocardial damage.

Adverse effects of progenitor cell treatment include risks of the delivery procedure (eg, thoracotomy, percutaneous catheter-based) and risks of the donor cells themselves. Donor progenitor cells can differentiate into fibroblasts rather than myocytes. This may create a substrate for malignant ventricular arrhythmias. There also is a theoretical risk that tumors (eg, teratomas) can arise from progenitor cells, but the actual risk in humans is currently unknown.

FDA or Other Governmental Regulatory Approval

U.S. Food and Drug Administration (FDA)

The U.S. FDA regulates human cells and tissues intended for implantation, transplantation, or infusion through the Center for Biologics Evaluation and Research, under Code of Federal Regulation title 21, parts 1270 and 1271. Progenitor cells are included in these regulations. FDA marketing clearance is not required when autologous cells are processed on site with existing laboratory procedures and injected with existing catheter devices. Several cell products are expanded ex vivo and require FDA approval. The 21st Century Cures Act (December 2016) established new expedited product development programs including one for regenerative medicine advanced therapy (RMAT). The RMAT designation may be given if: (1) the drug is a regenerative medicine therapy (ie, a cell therapy), therapeutic tissue engineering product, human cell and tissue product, or any combination product; (2) the drug is intended to treat, modify, reverse, or cure a serious or life-threatening disease or condition; and (3) preliminary clinical evidence indicates that the drug has the potential to address unmet medical needs.

Multiple progenitor cell therapies such as MyoCell®, ixmyelocel-T (Vericel, formerly Aastrom Biosciences), MultiStem® (Athersys), and CardiAMP™ (BioCardia) are being commercially developed, but none has been approved by FDA so far.

©2018 Blue Cross and Blue Shield of Louisiana
Progenitor Cell Therapy for the Treatment of Damaged Myocardium due to Ischemia

Policy # 00486
Original Effective Date: 12/16/2015
Current Effective Date: 12/19/2018

MyoCell comprises patient autologous skeletal myoblasts that are expanded ex vivo and supplied as a cell suspension in a buffered salt solution for injection into the area of damaged myocardium. In 2017, U.S. Stem Cell reprioritized its efforts away from seeking RMAT designation for MyoCell.

Ixmyelocel-T is an expanded multicellular therapeutic product produced from a patient's bone marrow by selectively expanding bone marrow mononuclear cells for 2 weeks. The expanded cell product enriched for mesenchymal and macrophage lineages might enhance potency. Vericel has received RMAT designation for Ixmyelocel-T.

MultiStem is an allogeneic bone marrow–derived adherent adult stem cell product.

CardiAMP Cell Therapy system consists of a proprietary assay to identify patients with a high probability to respond to autologous cell therapy, a proprietary cell processing system to isolate process and concentrate the stem cells from a bone marrow harvest at the point of care, and a proprietary delivery system to percutaneously inject the autologous cells into the myocardium. BioCardia has received an investigational device exemption from FDA to perform a trial of CardiAMP.

Centers for Medicare and Medicaid Services (CMS)
There is no national coverage determination (NCD). In the absence of an NCD, coverage decisions are left to the discretion of local Medicare carriers.

Rationale/Source
Evidence reviews assess the clinical evidence to determine whether the use of a technology improves the net health outcome. Broadly defined, health outcomes are length of life, quality of life, and ability to function—including benefits and harms. Every clinical condition has specific outcomes that are important to patients and to managing the course of that condition. Validated outcome measures are necessary to ascertain whether a condition improves or worsens; and whether the magnitude of that change is clinically significant. The net health outcome is a balance of benefits and harms.

To assess whether the evidence is sufficient to draw conclusions about the net health outcome of a technology, 2 domains are examined: the relevance and the quality and credibility. To be relevant, studies must represent one or more intended clinical use of the technology in the intended population and compare an effective and appropriate alternative at a comparable intensity. For some conditions, the alternative will be supportive care or surveillance. The quality and credibility of the evidence depend on study design and conduct, minimizing bias and confounding that can generate incorrect findings. The randomized controlled trial (RCT) is preferred to assess efficacy; however, in some circumstances, nonrandomized studies may be adequate. RCTs are rarely large enough or long enough to capture less common adverse events and long-term effects. Other types of studies can be used for these purposes and to assess generalizability to broader clinical populations and settings of clinical practice.
The present evidence review focuses on phase 3 trials with at least 100 patients per arm and systematic reviews of RCTs. Relevant clinical trials and meta-analyses are reviewed for 3 different indications: (1) acute cardiac ischemia (myocardial infarction); (2) chronic cardiac ischemia; and (3) refractory or intractable angina in patients who are not candidates for revascularization. This evidence review focuses on the impact of progenitor cell therapy on clinical outcomes but also includes data on physiologic outcomes, such as a change in left ventricular ejection fraction (LVEF). This review was informed in part by a TEC Assessment (2008).

PROGENITOR CELLS TO TREAT ACUTE CARDIAC ISCHEMIA

Systematic Reviews
Bone Marrow Cells
Four meta-analyses published from 2014 to 2015, including a Cochrane review and an individual patient data meta-analysis evaluating the use of progenitor cell therapy for treating acute ischemia (myocardial infarction), are described below. Table 1 details the reviews and summarizes the analyses.

Two meta-analyses on bone marrow cell (BMC) infusion for the treatment of acute myocardial infarction (AMI) were published in 2014 and included many of the same studies. Delewi et al (2014) published a meta-analysis of 16 trials (total N=1641 patients).5 The meta-analyses by de Jong et al (2014) included 22 RCTs (total N=1513 patients).6 Thirteen RCTs (1300 patients) appeared in both systematic reviews. Both analyses found statistically significant increases in LVEF with BMC infusion compared with placebo. In subgroup analyses, Delewi et al showed that the treatment benefit was greater among younger patients (age <55 years) and among patients with more severely depressed LVEF at baseline (<40%), while the de Jong subgroup analysis, which included only trials with outcomes derived from magnetic resonance imaging (9 trials), showed that the therapy did not have an effect on cardiac function, volumes, or infarct size. With a median follow-up of 6 months, there was no difference between BMC infusion and placebo in all-cause mortality, cardiac mortality, restenosis rate, thrombosis, target vessel revascularization, stroke, recurrent AMI, or implantable cardioverter defibrillator usage. Based on these findings, de Jong et al concluded that, although safe, intracoronary infusion of BMCs did not improve clinical outcomes.

A Cochrane review by Fisher et al (2015) on stem cell treatment for AMI included 41 trials (total N=2732 patients).7 Many were small trials and conducted outside the United States; others were reported only as conference proceedings. Studies varied by cell dose, cell type, and timing of administration. Overall, cell treatment was not associated with any changes in the risk of all-cause mortality, cardiovascular mortality, or a composite measure of mortality, reinfarction, and rehospitalization for heart failure at long-term follow-up. Reviewers concluded that there was insufficient evidence to support a beneficial effect of cell therapy for patients experiencing an AMI and that adequately powered trials are needed.

Gyöngyösi et al (2015) conducted an individual patient data meta-analysis of 12 RCTs (total N=1252 patients), including the REPAIR-AMI trial (reviewed below), using a collaborative, multinational database,
Progenitor Cell Therapy for the Treatment of Damaged Myocardium due to Ischemia

Policy # 00486
Original Effective Date: 12/16/2015
Current Effective Date: 12/19/2018

ACCRUE (meta-Analysis of Cell-based CaRdiac study; NCT01098591). Eight trials had low risk of bias, and 4 single-blind (assessor) trials had medium-to-low risk of bias. Adjusted (for cardiovascular risk factors) random-effects meta-analyses showed no effect of cell therapy on the primary outcomes of major adverse cardiac and cerebrovascular events (a composite of all-cause death, AMI recurrence, coronary target vessel revascularization, and stroke). The meta-analysis was limited by variations in the time from AMI to cell delivery (median, 6.5 days) and in imaging modalities used to assess cardiac function (magnetic resonance imaging, single-proton emission computed tomography, angiography, echocardiography).

Fisher et al (2016) reported on the results of a trial sequential analysis using cumulative data obtained from 2 previous Cochrane reviews with updated results to March 2015.9 The intent of the analysis was to obtain estimates of sample sizes required for a meta-analysis to detect a significant treatment effect while controlling for random errors due to repeat testing. Thirty-seven AMI trials that assessed BMCs and reported on mortality as an outcome were included. Of the 37, 14 reported no deaths. Of 23 trials that observed incidences of mortality in either trial arm, there were 43 (4.0%) deaths in 1073 patients who received cell therapy compared with 38 (5.0%) deaths in 754 patients who did not. Results showed that there was insufficient evidence to detect a significant treatment effect of bone marrow derived cells on mortality and rehospitalization in AMI (relative risk [RR], 0.92; 95% confidence interval [CI], 0.62 to 1.36). Results of the sequential analysis showed that at least 4055 participants would be required to detect a relative reduction in the risk of mortality of 35% in AMI patients. Most of the meta-analyses reported so far have not reached this sample size.

Granulocyte Colony Stimulating Factor

The body of evidence on the use of granulocyte colony stimulating factor (G-CSF) as a treatment for coronary heart disease is smaller than that for the use of stem cells. A few RCTs on the treatment of acute ischemia have reported physiologic outcomes. Additionally, meta-analyses of the available trials have been published. Moazzami et al (2013) published a Cochrane review evaluating G-CSF for AMI.10 Literature was searched in November 2010, and 7 small, placebo-controlled randomized trials (total N=354 patients) were included. The overall risk of bias was considered low. All-cause mortality did not differ between groups (RR=0.6; 95% CI, 0.2 to 2.8; p=0.55; I^2=0%). Similarly, change in LVEF left ventricular end-systolic volume and left ventricular end-diastolic volume did not differ between groups. Evidence was insufficient to draw conclusions about the safety of the procedure. Similarly, reviewers concluded there was a lack of evidence for the benefit of G-CSF therapy in patients with AMI.

Randomized Controlled Trials

Key studies, including phase 3 RCTs with more than 100 patients per arm, are described next. Summaries of trial characteristics and results are in Tables 2 and 3.

REPAIR-AMI Trial

REPAIR-AMI was a double-blinded trial that infused bone marrow–derived progenitor cells or a placebo control infusion of the patient’s serum; it enrolled 204 patients from 17 centers in Germany and Switzerland

©2018 Blue Cross and Blue Shield of Louisiana

Blue Cross and Blue Shield of Louisiana is an independent licensee of the Blue Cross and Blue Shield Association and incorporated as Louisiana Health Service & Indemnity Company.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without permission from Blue Cross and Blue Shield of Louisiana.
who had acute ST-segment elevation myocardial infarction and met strict inclusion criteria. At 12-month follow-up, there were statistically significant decreases in the progenitor cell group compared with the control group for myocardial infarction (0 vs 6, p<0.03) and revascularization (22 vs 37, p<0.03), as well as for the composite outcome of death, myocardial infarction, and revascularization (24 vs 42, p<0.009), all respectively. Two-year clinical outcomes from the REPAIR-AMI trial, performed according to a study protocol amendment filed in 2006, were reported in 2010. Eleven deaths occurred during the 2-year follow-up, 8 in the placebo group and 3 in the progenitor cell group. There was a significant reduction in myocardial infarction (0% vs 7%), and a trend toward a reduction in rehospitalizations for heart failure (1% vs 5%) and revascularization (25% vs 37%) in the active treatment group. Analysis of combined events (all combined events included infarction) showed significant improvement with progenitor cell therapy after AMI. There was no increase in ventricular arrhythmia, syncope, stroke, or cancer. It was noted that investigators and patients were unblinded at 12-month follow-up. Also, the REPAIR-AMI trial was not powered to determine definitively whether administration of progenitor cells reduces mortality and morbidity after AMI.

HEBE Trial

Hirsch et al (2011) reported on a multicenter, phase 3, RCT that compared bone marrow or peripheral blood mononuclear cell infusion with standard therapy in 200 patients with AMI treated with primary percutaneous coronary intervention. Mononuclear cells were delivered 3 to 8 days after AMI. Blinded assessment of the primary outcome (the percentage of dysfunctional left ventricular segments that had improved segmental wall thickening at 4 months) found no significant difference between the treatment groups (38.5% for bone marrow vs 36.8% for peripheral blood) and controls (42.4%). There were no significant differences between groups in LVEF; change in left ventricular volumes, mass, or infarct size; or rates of clinical events. At 4 months, a similar percentage of patients had New York Heart Association (NYHA) class II or higher heart failure (19% for bone marrow, 20% for peripheral blood, 18% for controls).
Table 1. Summary of Systematic Reviews Assessing Use of Progenitor Cell Therapy to Treat Acute Ischemia

<table>
<thead>
<tr>
<th>Study</th>
<th>Dates</th>
<th>Trials</th>
<th>Patients</th>
<th>Design</th>
<th>Mean Time Between Acute Event and Cell Infusion</th>
<th>Median Trial Duration (Range), mo</th>
<th>Mean Change or % Change in LVEF</th>
<th>Risk of All-Cause Mortality</th>
<th>Risk of CV Mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delevi et al (2014)</td>
<td>1990-Feb 2013</td>
<td>16</td>
<td>1641</td>
<td>RCT</td>
<td>≤1 mo</td>
<td>6 (3-6)</td>
<td>2.55% (1.83% to 3.26%)</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>De Jong et al (2014)</td>
<td>Jan 2002-Sep 2013</td>
<td>22</td>
<td>1513</td>
<td>RCT</td>
<td>≤1 mo</td>
<td>6 (3-60)</td>
<td>2.10% (0.68% to 3.52%)</td>
<td>0.68 (0.36 to 1.31)</td>
<td>0.73 (0.22 to 1.55)</td>
</tr>
<tr>
<td>Fisher et al (2015)</td>
<td>Through Mar 2015</td>
<td>41</td>
<td>2732</td>
<td>RCT</td>
<td>≤14 d</td>
<td><12</td>
<td>1.05 (0.56 to 2.67)</td>
<td>0.80 (0.43 to 1.49)</td>
<td>0.72 (0.28 to 1.52)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>≥12</td>
<td></td>
<td>1.27 (0.58 to 3.68)</td>
<td>0.93 (0.32 to 1.65)</td>
<td>1.04 (0.54 to 1.99)</td>
</tr>
<tr>
<td>Gyöngyösi et al (2015)</td>
<td></td>
<td>12</td>
<td>1252</td>
<td>RCT or cohort</td>
<td>≤14 d</td>
<td>6 (3-12)</td>
<td>0.96 (-0.2 to 2.1)</td>
<td>0.70 (p=0.499)</td>
<td>NR</td>
</tr>
</tbody>
</table>

CI: confidence interval; CV: cardiovascular; LVEF: left ventricular ejection fraction; NR: not reported; RCT: randomized controlled trial.

a Mantel-Haenszel odds ratio (95% CI).
b As measured by magnetic resonance imaging.
c Relative risk (95% CI).

Table 2. RCT Characteristics of Progenitor Cell Therapy for Acute Ischemia

<table>
<thead>
<tr>
<th>Study; Trial</th>
<th>Countries</th>
<th>Sites</th>
<th>Dates</th>
<th>Participants</th>
<th>Cell Therapies</th>
<th>Comparator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schächinger et al (2006)⁶, REPAIR-AMI (NCT00279175)</td>
<td>Germany, Switzerland</td>
<td>17</td>
<td>2004-2005</td>
<td>Acute ST-elevation MI; successfully reperfused; LVEF ≤45%</td>
<td>Intracoronary infusion of BMCs (n=101)</td>
<td>Sham infusion (n=103)</td>
</tr>
<tr>
<td>Hirsch et al (2011)⁷, HEBE (ISRCTN95796863)</td>
<td>Netherlands</td>
<td>8</td>
<td>2005-2008</td>
<td>ST-segment elevation MI; treated with primary PCI and stent implantation</td>
<td>• Intracoronary infusion of autologous mononuclear BMCs (n=69)</td>
<td>Standard of care without sham infusion (n=65)</td>
</tr>
</tbody>
</table>

BMC: bone marrow cell; LVEF: left ventricular ejection fraction; MI: myocardial infarction; PCI: percutaneous coronary intervention.
Progenitor Cell Therapy for the Treatment of Damaged Myocardium due to Ischemia

Policy # 00486
Original Effective Date: 12/16/2015
Current Effective Date: 12/19/2018

Table 3. RCT Results of Progenitor Cell Therapy for Acute Ischemia

<table>
<thead>
<tr>
<th>Study</th>
<th>Mortality, n</th>
<th>Major Adverse Events, n</th>
<th>Rehospitalization for Heart Failure, n</th>
<th>LVEF By 1 Year</th>
<th>Death, MI, Revascularization by 1 Year</th>
<th>Mean Change From BL to 4 Months (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schächinger et al (2006)¹¹,¹²</td>
<td>N 204</td>
<td>204</td>
<td>204</td>
<td>187</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cell therapy</td>
<td>6</td>
<td>23</td>
<td>0</td>
<td>5.5 (7.3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sham</td>
<td>2</td>
<td>40</td>
<td>3</td>
<td>3.0 (6.5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TE (95% CI); p</td>
<td>NR; p=0.28</td>
<td>NR; p=0.01</td>
<td>NR; p=0.25</td>
<td>NR; p=0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>By 4 Months</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Death, MI, Revascularization by 4 Months</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rehospitalization for Heart Failure, n</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LVEF Mean Change From BL to 4 Months (SD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hirsch et al (2011)¹⁴</td>
<td>N 200</td>
<td>200</td>
<td>200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMC therapy</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>189</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PBC therapy</td>
<td>1</td>
<td>9</td>
<td>1</td>
<td>3.8 (7.4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOC</td>
<td>0</td>
<td>6</td>
<td>1</td>
<td>4.2 (6.2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TE (95% CI); p</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>4.0 (5.8)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BL: baseline; BMC: bone marrow cell; CI: confidence interval; LVEF: left ventricular ejection fraction; NR: not reported; PBC: peripheral blood cell; RCTA: randomized controlled trial; SOC: standard of care; TE: treatment effect.

Section Summary: Progenitor Cells to Treat Acute Cardiac Ischemia

The evidence on progenitor cell therapy for patients with myocardial infarction includes 2 phase 3 RCTs including more than 100 patients, numerous small, early-phase RCTs, and meta-analyses of these RCTs. Studies varied by types of cell used and methods and timing of delivery. Most studies reported outcomes for LVEF and/or myocardial perfusion at 3 to 6 months. These studies generally reported small-to-modest improvements in these intermediate outcomes. Limited evidence on clinical outcomes has suggested that there may be benefits in improving LVEF, reducing recurrent myocardial infarction, decreasing the need for further revascularization, and perhaps decreasing mortality, although a recent, large, individual patient data meta-analysis reported no improvement in these outcomes. No single adequately powered trial has reported benefits in clinical outcomes, such as mortality, adverse cardiac outcomes, exercise capacity, or quality of life. Overall, this evidence has suggested that progenitor cell treatment may be a promising intervention, but robust data on clinical outcomes are lacking. High-quality RCTs, powered to detect differences in clinical outcomes, are needed.

PROGENITOR CELLS TO TREAT CHRONIC CARDIAC ISCHEMIA

Stem cell therapy is also being investigated in patients with chronic ischemic heart disease. The evidence includes systematic reviews, many small, early-phase RCTs, 2 phase 3 RCTs with more than 100 participants, and nonrandomized studies.

©2018 Blue Cross and Blue Shield of Louisiana

Blue Cross and Blue Shield of Louisiana is an independent licensee of the Blue Cross and Blue Shield Association and incorporated as Louisiana Health Service & Indemnity Company.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without permission from Blue Cross and Blue Shield of Louisiana.

Page 8 of 17
Progenitor Cell Therapy for the Treatment of Damaged Myocardium due to Ischemia

Policy # 00486
Original Effective Date: 12/16/2015
Current Effective Date: 12/19/2018

Systematic Reviews
Fisher et al (2016) reported on a systematic review that updated a 2014 Cochrane. In 2016, literature was searched through December 2015, and 38 RCTs (total N=1907 patients) were included. The overall quality of the evidence was considered low because selected studies were small (only three included >100 participants) and the number of events was low, leading to a risk of small-study bias and spuriously inflated effect sizes. Results of the 2016 Cochrane review are shown in Table 4. While reviewers were unable to detect evidence of publication bias using funnel plots, they noted that of 28 identified ongoing trials, 11 trials with 787 participants, were recorded as having been completed or were due to have been completed in advance of the search date but had no publications. Therefore, publication bias cannot be ruled out. Similar results were reported in 2014 meta-analyses conducted by Xu et al and by Xiao et al.

Table 4. Cochrane Review Results of Stem Cell Therapy for Chronic Ischemic Heart Disease

<table>
<thead>
<tr>
<th>Variables</th>
<th>Short-Term<sup>a</sup> Mortality</th>
<th>Long-Term<sup>b</sup> Mortality</th>
<th>Long-Term<sup>b</sup> Rehospitalization</th>
<th>Long-Term<sup>b</sup> MACE</th>
<th>Short-Term<sup>a</sup> NYHA Classification</th>
<th>Short-Term<sup>a</sup> LVEF (%)<sup>c</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>1637</td>
<td>1010</td>
<td>495</td>
<td>201</td>
<td>658</td>
<td>352</td>
</tr>
<tr>
<td>PE (95% CI); p value</td>
<td>0.48 (0.26 to 0.87)</td>
<td>0.38 (0.25 to 0.76)</td>
<td>0.62 (0.36 to 1.04)</td>
<td>0.68 (0.41 to 1.00)</td>
<td>0.42 (<0.05 to 0.87)</td>
<td>3.01 (0.05 to 0.27)</td>
</tr>
<tr>
<td>I<sup>2</sup> (p)</td>
<td>0% (0.76)</td>
<td>0% (0.97)</td>
<td>0% (0.70)</td>
<td>0% (0.80)</td>
<td>97% (0.001)</td>
<td>99% (0.01)</td>
</tr>
</tbody>
</table>

Adapted from Fisher et al (2016)
CI: confidence interval; LVEF: left ventricular ejection fraction; MACE: major adverse cardiac event; NYHA: New York Heart Association; PE: pooled effect.
^a Short-term: <12 months.
^b Long-term: ≥12 months.
^c Measured by magnetic resonance imaging.

Fisher et al (2016) also reported on the results of a sequential trial analysis using cumulative data obtained from 2 previous Cochrane reviews with updated results to March 2015. The intent of their analysis was to obtain estimates of sample sizes required for a meta-analysis to detect a significant treatment effect while controlling for random errors due to repeat testing. Twenty-two trials that included all-cause mortality were selected. Six trials reported no deaths, while the remaining 16 trials reported 25 (5.6%) deaths in 444 patients who received progenitor cells compared with 50 (15.9%) deaths in 315 patients who did not. Meta-analysis of the pooled data revealed a significant reduction in mortality associated with cell therapy in patients with heart failure (RR=0.42; 95% CI; 0.27 to 0.64; p<0.001).

Randomized Controlled Trials
Two phase 3 RCTs with more than 100 participants were identified. Trial characteristics and results are shown in Tables 5 and 6. Bartunek et al (2017) reported on the results of a well-conducted double-blind trial in which 271 patients with NYHA class II or greater symptomatic heart failure (LVEF ≤35%) were randomized to bone marrow–derived mesenchymal cardiopoietic cells (n=120) or sham (n=151). The primary outcome was Finkelstein–Schoenfeld hierarchical composite (all-cause mortality, worsening heart failure, Minnesota Living with Heart Failure Questionnaire score, 6-minute walk distance, left ventricular end-systolic volume, and ejection fraction) at 39 weeks. Sixteen patients who died and 3 who withdrew...
consent after randomization were not included in the analysis. Also, 19 patients whose cell product did not meet release criteria were excluded from analysis in the cardiopoietic cell group. The probability that the treatment group had a better outcome on the composite primary outcome was 0.54 (a value >0.5 favors active treatment; 95% CI, 0.47 to 0.61; p=0.27). Exploratory subgroup analysis reported treatment benefit in patients, with baseline left ventricular end-diastolic volumes of 200 to 370 mL (60% of patients) (0.61; 95% CI, 0.52 to 0.70; p=0.015). There was no statistical difference in serious adverse events between treatment arms. One (0.9%) cardiopoietic cell patient and 9 (5.4%) sham patients experienced aborted or sudden cardiac death.

Pokushalov et al (2010) reported on the results of an RCT of intramyocardial injections of autologous bone marrow mononuclear cells (n=55) compared with optimal medical management (n=54) in patients who had chronic, ischemic heart failure. The trial appears to have been conducted in Russia; dates of study conduct were not reported. Power calculations were not reported, and it is not clear if the trial was registered. Comparative treatment effects were not calculated for many outcomes. Characteristics and results are shown in Tables 5 and 6. The RCT reported statistically significant improvements in mortality rates at 12 months for cell therapy (11%) vs medical therapy (39%) favoring medical therapy (p<0.001).

Table 5. RCT Characteristics of Progenitor Cell Therapy for Chronic Ischemic Heart Disease

<table>
<thead>
<tr>
<th>Study; Trial</th>
<th>Countries</th>
<th>Sites</th>
<th>Dates</th>
<th>Participants</th>
<th>Cell Therapy</th>
<th>Comparator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bartunek et al (2017)¹²; CHART-1 (NCT01768702)</td>
<td>Multinational²</td>
<td>39</td>
<td>2012-2015</td>
<td>LVEF ≤35%, NYHA class ≥II on guidelines-directed therapy</td>
<td>Cardiopoietic cells (n=157)</td>
<td>Sham (n=158)</td>
</tr>
<tr>
<td>Pokushalov et al (2010)¹⁰</td>
<td>Russia</td>
<td>NR</td>
<td>NR</td>
<td>LVEF <35%, end-stage, chronic heart failure, on optimal medical therapy, not eligible for revascularization</td>
<td>Bone marrow cells (n=55)</td>
<td>Medical management, no sham (n=54)</td>
</tr>
</tbody>
</table>

LVEF: left ventricular ejection fraction; NR: not reported; NYHA: New York Heart Association
²Belgium, Bulgaria, Hungary, Ireland, Israel, Italy, Poland, Serbia, Spain, Sweden, Switzerland, and United Kingdom.

Table 6. RCT Results of Progenitor Cell Therapy for Chronic Ischemic Heart Disease

<table>
<thead>
<tr>
<th>Study</th>
<th>At 39 Weeks</th>
<th>Worsening; ≥1 Event Through 39 Weeks</th>
<th>≥10-point Improvement From BL to 39 Weeks</th>
<th>≥40 m Improvement From BL to 39 Weeks, n (%)</th>
<th>≥4% Improvement From BL to 39 Weeks, n (%)</th>
<th>LVEF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bartunek et al (2017)¹²</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>271</td>
<td>271</td>
<td>244</td>
<td>239</td>
<td>226</td>
<td></td>
</tr>
<tr>
<td>Cell therapy</td>
<td>11 (9%)</td>
<td>20 (17%)</td>
<td>64 (59%)</td>
<td>50 (46%)</td>
<td>69 (68%)</td>
<td></td>
</tr>
<tr>
<td>Sham</td>
<td>12 (8%)</td>
<td>23 (15%)</td>
<td>66 (49%)</td>
<td>40 (31%)</td>
<td>82 (68%)</td>
<td></td>
</tr>
<tr>
<td>TE (95%)</td>
<td>HR=1.2 (0.5 to 2.7); Odds*=1.03 (0.9)</td>
<td>Odds*=0.8 (0.7 to 0.8)</td>
<td>Odds*=0.8 (0.7 to 0.8)</td>
<td>Odds*=1.0 (0.8 to 1.2);</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

©2018 Blue Cross and Blue Shield of Louisiana

Blue Cross and Blue Shield of Louisiana is an independent licensee of the Blue Cross and Blue Shield Association and incorporated as Louisiana Health Service & Indemnity Company.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without permission from Blue Cross and Blue Shield of Louisiana.
Progenitor Cell Therapy for the Treatment of Damaged Myocardium due to Ischemia

Policy # 00486
Original Effective Date: 12/16/2015
Current Effective Date: 12/19/2018

©2018 Blue Cross and Blue Shield of Louisiana

Study Mortality, n (%)

Pokushalov et al (2010)³⁰

<table>
<thead>
<tr>
<th>Study</th>
<th>Bone Marrow Therapy</th>
<th>Sham</th>
<th>TE (95% CI); p</th>
<th>Mortality, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>109</td>
<td>107</td>
<td><0.001</td>
<td>0.70</td>
</tr>
<tr>
<td>Improved NYHA Class by 1 Class at 3 Months</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cell therapy</td>
<td>25 (46%)</td>
<td>21 (39%)</td>
<td>0.03</td>
<td>0.70</td>
</tr>
<tr>
<td></td>
<td>0.72</td>
<td>0.72</td>
<td>0.12</td>
<td>0.72</td>
</tr>
<tr>
<td></td>
<td>1.0; 0.12</td>
<td>1.0; 0.12</td>
<td>0.07</td>
<td>0.73</td>
</tr>
<tr>
<td>Mean Distance Walked at 12 Months (SD), m</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean at 3 Months (SD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>359 (69)</td>
<td>28 (6)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BL: baseline; HR: hazard ratio; LVEF, left ventricular ejection fraction; MLHFQ: Minnesota Living with Heart Failure Questionnaire; NR: not reported; RR: relative risk; TE: treatment effect.

Values <1.0 favor cell therapy treatment.

Nonrandomized Controlled Trials

STAR-Heart Trial

The STAR-Heart trial evaluated stem cell therapy for chronic heart failure due to ischemic cardiomyopathy. This nonrandomized open-label study, reported by Strauer et al (2010), evaluated 391 patients with chronic heart failure. In this trial, 191 patients received intracoronary BMC therapy, and 200 patients who did not accept the treatment agreed to undergo follow-up testing served as controls. Mean time between percutaneous coronary intervention for infarction and admission to the tertiary clinic was 8.5 years. For BMC therapy, mononuclear cells were isolated and identified (included CD34-positive cells, AC133-positive cells, CD45-/CD14-negative cells). Cells were infused directly into the infarct-related artery. At up to 5 years after intracoronary BMC therapy, there was a significant improvement in hemodynamics (LVEF, cardiac index), exercise capacity (NYHA classification), oxygen uptake, and left ventricular contractility compared with controls. There also was a significant decrease in long-term mortality in the BMC-treated patients (0.75% per year) compared with the control group (3.68% per year, p<0.01). However, the trial was limited by the potential for selection bias (patient self-selection into treatment groups). For example, there was a 7% difference in baseline ejection fraction rates between groups, suggesting that the groups were not comparable on important clinical characteristics at baseline. Additionally, lack of blinding raises the possibility of bias in patient-reported outcomes such as NYHA class.

Section Summary: Progenitor Cells to Treat Chronic Cardiac Ischemia

The evidence on progenitor cell therapy for chronic ischemia includes RCTs, systematic reviews of RCTs, and a nonrandomized comparative trial. The studies included in the meta-analyses were generally early-phase, small (<100 participants) trials; they only reported on a small number of clinical outcome events. The findings from early-phase 2 trials need to be corroborated in a larger phase 3 trial. One well-conducted, phase 3 trial failed to demonstrate superiority for cell therapy for the primary outcome that included death, worsening heart failure, and other multiple events. The nonrandomized STAR-Heart trial showed a mortality
Progenitor Cell Therapy for the Treatment of Damaged Myocardium due to Ischemia

Policy # 00486
Original Effective Date: 12/16/2015
Current Effective Date: 12/19/2018

benefit as well as a favorable hemodynamic effect but the lack of randomization limits interpretation due to concerns about selection bias and differences in known and unknown prognostic variables at baseline between arms. Overall, this evidence has suggested that progenitor cell treatment may be a promising intervention, but robust data on clinical outcomes are lacking. High-quality RCTs, powered to detect differences in clinical outcomes, are needed.

PROGENITOR CELL THERAPY TO TREAT REFRACTORY ANGINA

Stem cell therapy also is being investigated in patients with intractable angina who are not candidates for revascularization. The evidence includes a systematic review, 4 trials from 2007 through 2014 with fewer than 100 patients, 2 phase 1/2 trials with more than 100 patients, and 1 phase 3 trial with more than 100 participants, which is discussed more in the section on RCTs.

Systematic Reviews
Khan et al (2016) reported on the results of a systematic review of RCTs evaluating cell therapy in patients with refractory angina who were ineligible for coronary revascularization. The risk of bias in the included studies was rated as low. All selected randomized trials were placebo-controlled; 5 RCTs were blinded and in one blinding was not reported. The systematic review characteristics and results are shown in Tables 7 and 8. The trials varied in durations of follow-up but appear to have been pooled regardless of the timing of the outcome in the analysis. Although there was a beneficial effect of cell therapy on frequency of angina in the pooled analysis, there was significant heterogeneity for the angina outcome, which was attributed to 1 RCT. With removal of this RCT, there was an attenuation of the effect (mean difference, -3.38; 95% CI, -6.56 to 0.19).

Table 7. Systematic Review Characteristics of Progenitor Cell Therapy for Refractory Angina

<table>
<thead>
<tr>
<th>Study</th>
<th>Dates</th>
<th>Trials</th>
<th>Participants</th>
<th>N (Range)</th>
<th>Design</th>
<th>Length of FU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Khan et al (2016)</td>
<td>Up to Sep 2015</td>
<td>6</td>
<td>Refractory angina who were ineligible for coronary revascularization</td>
<td>353 (24-112)</td>
<td>RCT</td>
<td>6 mo to 2 y</td>
</tr>
</tbody>
</table>

FU: follow-up; RCT: randomized controlled trial.

Table 8. Systematic Review Results of Progenitor Cell Therapy for Refractory Angina

<table>
<thead>
<tr>
<th>Study</th>
<th>Frequency of Angina</th>
<th>CCS Angina Class</th>
<th>MACE</th>
<th>Mortality</th>
<th>QOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Khan et al (2016)</td>
<td>271</td>
<td>210</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>PE (95% CI); p value</td>
<td>MD = -7.8 (-15.2 to -0.41);</td>
<td>MD = -0.58 (-1.00 to -0.16);</td>
<td>OR=0.49 (0.25 to 0.98);</td>
<td>0.04</td>
<td>0.007</td>
</tr>
<tr>
<td>f (p)</td>
<td>90% (<0.001)</td>
<td>0% (0.67)</td>
<td>0% (NR)</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

CCS: Canadian Cardiovascular Society; CI: confidence interval; MACE: major adverse cardiac events; MD: mean difference; OR: odds ratio; PE: pooled effect; QOL: quality of life.
Randomized Controlled Trials
One phase 3 trial of cell therapy in patients with refractory angina who were ineligible for coronary revascularization including more than 100 participants has been reported. Characteristics and results are shown in Tables 9 and 10.

RENEW Trial
Povsic et al (2016) reported on the industry-sponsored Efficacy and Safety of Targeted Intramyocardial Delivery of Auto CD34+ Stem Cells (RENEW) trial. This 3-arm multicenter trial compared outcomes from the intramyocardial administration of autologous CD34-positive cells using exercise capacity at 3, 6, or 12 months. Patients underwent cell mobilization with G-CSF for 4 days followed by apheresis. The peripheral cell product was shipped to a central processing facility (Progenitor Cell Therapy) for selection of CD34-positive cells. The trial was terminated after enrollment of 112 of a planned 444 patients before data analysis due to strategic considerations. The progenitor cell group had greater exercise capacity than the standard therapy group but was no better than the double-blinded placebo group, consistent with a placebo effect. Additionally, with only 122 participants, the trial was not adequately powered to detect a between-group difference.

Table 9. RCT Characteristics of Progenitor Cell Therapy for Refractory Angina

<table>
<thead>
<tr>
<th>Study; Trial</th>
<th>Countries</th>
<th>Sites</th>
<th>Dates</th>
<th>Participants</th>
<th>Cell Therapy</th>
<th>Comparator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Povsic et al (2016)28; RENEW</td>
<td>U.S.</td>
<td>41</td>
<td>2012-2013</td>
<td>CCS class III/IV angina, LVEF ≥25%, on maximally tolerated drug therapy, not</td>
<td>Autologous CD34-positive (G-CSF stem cell mobilization, apheresis, and IM</td>
<td>• Standard of care: no additional intervention, not blinded (n=28)</td>
</tr>
<tr>
<td>(NCT01508910)</td>
<td></td>
<td></td>
<td></td>
<td>eligible for revascularization</td>
<td>CD34-positive injection) (n=54)</td>
<td>• Active control: G-CSF stem cell mobilization, apheresis, and IM placebo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>injection (n=27)</td>
</tr>
</tbody>
</table>

CCS: Canadian Cardiovascular Society; G-CSF: granulocyte colony stimulating factor; IM: intramyocardial; LVEF: left ventricular ejection fraction.

Table 10. RCT Results of Progenitor Cell Therapy for Refractory Angina

<table>
<thead>
<tr>
<th>Study</th>
<th>Angina Frequency</th>
<th>Exercise Time, s</th>
<th>MACE, n (%)</th>
<th>Death, n (%)</th>
<th>QOL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean Episodes/Week at 12 Months (SD)</td>
<td>Mean Change From BL to 12 Months (SD)</td>
<td>At 24 Months</td>
<td>At 24 Months</td>
<td></td>
</tr>
<tr>
<td>Povsic et al (2016)28</td>
<td>N</td>
<td>CT</td>
<td>SOC</td>
<td>AC</td>
<td>TE for CT vs AC</td>
</tr>
<tr>
<td></td>
<td>84</td>
<td>3.8 (6.2)</td>
<td>NR</td>
<td>2.7 (4.6)</td>
<td>RR=1.02 (NR); 0.95</td>
</tr>
<tr>
<td></td>
<td>109 (194)</td>
<td>106 (46%)</td>
<td>19 (88%)</td>
<td>90 (185)</td>
<td>20.4 (-68.9 to 109.6); 0.65</td>
</tr>
<tr>
<td></td>
<td>106 (46%)</td>
<td>2 (4%)</td>
<td>2 (7%)</td>
<td>12 (45%)</td>
<td>NR</td>
</tr>
<tr>
<td></td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

©2018 Blue Cross and Blue Shield of Louisiana

Blue Cross and Blue Shield of Louisiana is an independent licensee of the Blue Cross and Blue Shield Association and incorporated as Louisiana Health Service & Indemnity Company.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without permission from Blue Cross and Blue Shield of Louisiana.
Progenitor Cell Therapy for the Treatment of Damaged Myocardium due to Ischemia

Policy # 00486
Original Effective Date: 12/16/2015
Current Effective Date: 12/19/2018

Section Summary: Progenitor Cell Therapy to Treat Refractory Angina
Evidence on stem cell therapy for refractory angina includes early-phase trials, as well as a phase 3 pivotal trial terminated early and insufficiently powered to evaluate clinical outcomes. Additional larger trials are needed to determine whether progenitor cell therapy improves health outcomes in patients with refractory angina.

SUMMARY OF EVIDENCE
For individuals who have acute cardiac ischemia who receive progenitor cell therapy, the evidence includes 2 phase 3 RCTs, numerous small, early-phase RCTs, and meta-analyses of these RCTs. Relevant outcomes are disease-specific survival, morbid events, functional outcomes, quality of life, and hospitalizations. Limited evidence on clinical outcomes has suggested that there may be benefits from improving left ventricular ejection fraction, reducing recurrent myocardial infarction, decreasing the need for further revascularization, and perhaps decreasing mortality, although a recent, large, individual patient data meta-analysis reported no improvement in these outcomes. No adequately powered trial has reported benefits in clinical outcomes (eg, mortality, adverse cardiac outcomes, exercise capacity, quality of life). Overall, this evidence has suggested that progenitor cell treatment may be a promising intervention, but robust data on clinical outcomes are lacking. High-quality RCTs, powered to detect differences in clinical outcomes, are needed to answer this question. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals who have chronic cardiac ischemia who receive progenitor cell therapy, the evidence includes 2 phase 3 RCTs with more than 100 participants, systematic reviews of smaller, early-phase RCTs, and a nonrandomized comparative trial. Relevant outcomes are disease-specific survival, morbid events, functional outcomes, quality of life, and hospitalizations. The studies included in the meta-analyses have reported only on a small number of clinical outcome events. These findings from early phase 2 trials need to be corroborated in larger phase 3 trials. A well-conducted, phase 3 RCT trial failed to demonstrate superiority of cell therapy for its primary composite outcome that included death, worsening heart failure events, and other multiple events. The nonrandomized STAR-Heart trial showed a mortality benefit as well as favorable hemodynamic effect, but a lack of randomization limits interpretation due to the concern about selection bias and differences in known and unknown prognostic variables at baseline between both arms. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals who have refractory angina who receive progenitor cell therapy, the evidence includes a systematic review of RCTs, phase 2 trials, and a phase 3 pivotal trial. Relevant outcomes are disease-specific survival, morbid events, functional outcomes, quality of life, and hospitalizations. The only phase 3 trial identified was terminated early and insufficiently powered to evaluate clinical outcomes. Additional larger trials are needed to determine whether progenitor cell therapy improves health outcomes in patients...
with refractory angina. The evidence is insufficient to determine the effects of the technology on health outcomes.

References
Progenitor Cell Therapy for the Treatment of Damaged Myocardium due to Ischemia

Policy # 00486
Original Effective Date: 12/16/2015
Current Effective Date: 12/19/2018

Policy History
Original Effective Date: 12/16/2015
Current Effective Date: 12/19/2018
12/03/2015 Medical Policy Committee review
12/16/2015 Medical Policy Implementation Committee approval. New policy.
12/01/2016 Medical Policy Committee review
01/01/2017 Coding update: Removing ICD-9 Diagnosis Codes
12/07/2017 Medical Policy Committee review
12/20/2017 Medical Policy Implementation Committee approval. Coverage eligibility unchanged.
12/06/2018 Medical Policy Committee review
12/19/2018 Medical Policy Implementation Committee approval. Coverage eligibility unchanged.
Next Scheduled Review Date: 12/2019

Coding
The five character codes included in the Blue Cross Blue Shield of Louisiana Medical Policy Coverage Guidelines are obtained from Current Procedural Terminology (CPT®), copyright 2017 by the American Medical Association (AMA). CPT is developed by the AMA as a listing of descriptive terms and five character identifying codes and modifiers for reporting medical services and procedures performed by physician.

The responsibility for the content of Blue Cross Blue Shield of Louisiana Medical Policy Coverage Guidelines is with Blue Cross and Blue Shield of Louisiana and no endorsement by the AMA is intended or should be implied. The AMA disclaims responsibility for any consequences or liability attributable or related to any use, nonuse or interpretation of information contained in Blue Cross Blue Shield of Louisiana Medical Policy Coverage Guidelines. Fee schedules, relative value units, conversion factors and/or related components are not assigned by the AMA, are not part of CPT, and the AMA is not recommending their use. The AMA does not directly or indirectly practice medicine or dispense medical services. The AMA assumes no liability for data contained or not contained herein. Any use of CPT outside of Blue Cross Blue Shield of Louisiana Medical Policy Coverage Guidelines should refer to the most current Current Procedural Terminology which contains the complete and most current listing of CPT codes and descriptive terms. Applicable FARS/DFARS apply.

©2018 Blue Cross and Blue Shield of Louisiana

Blue Cross and Blue Shield of Louisiana is an independent licensee of the Blue Cross and Blue Shield Association and incorporated as Louisiana Health Service & Indemnity Company.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without permission from Blue Cross and Blue Shield of Louisiana.
Progenitor Cell Therapy for the Treatment of Damaged Myocardium due to Ischemia

Policy # 00486
Original Effective Date: 12/16/2015
Current Effective Date: 12/19/2018

CPT is a registered trademark of the American Medical Association.

Codes used to identify services associated with this policy may include (but may not be limited to) the following:

<table>
<thead>
<tr>
<th>Code Type</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPT</td>
<td>38205, 38206, 38230, 38240, 38241</td>
</tr>
<tr>
<td>HCPCS</td>
<td>J1442</td>
</tr>
<tr>
<td>ICD-10 Diagnosis</td>
<td>All related diagnoses</td>
</tr>
</tbody>
</table>

*Investigational – A medical treatment, procedure, drug, device, or biological product is Investigational if the effectiveness has not been clearly tested and it has not been incorporated into standard medical practice. Any determination we make that a medical treatment, procedure, drug, device, or biological product is Investigational will be based on a consideration of the following:

A. Whether the medical treatment, procedure, drug, device, or biological product can be lawfully marketed without approval of the U.S. FDA and whether such approval has been granted at the time the medical treatment, procedure, drug, device, or biological product is sought to be furnished; or

B. Whether the medical treatment, procedure, drug, device, or biological product requires further studies or clinical trials to determine its maximum tolerated dose, toxicity, safety, effectiveness, or effectiveness as compared with the standard means of treatment or diagnosis, must improve health outcomes, according to the consensus of opinion among experts as shown by reliable evidence, including:

1. Consultation with the Blue Cross and Blue Shield Association TEC or other nonaffiliated technology evaluation center(s);
2. Credible scientific evidence published in peer-reviewed medical literature generally recognized by the relevant medical community; or
3. Reference to federal regulations.

‡ Indicated trademarks are the registered trademarks of their respective owners.

NOTICE: Medical Policies are scientific based opinions, provided solely for coverage and informational purposes. Medical Policies should not be construed to suggest that the Company recommends, advocates, requires, encourages, or discourages any particular treatment, procedure, or service, or any particular course of treatment, procedure, or service.