Serum Biomarker Human Epididymis Protein 4 (HE4)
Archived Medical Policy

Archived medical policies are no longer subject to periodic review, are maintained for reference, and may be returned to active status if the need is identified.

Policy # 00274
Original Effective Date: 10/20/2010
Archived Date: 11/20/2013

Applies to all products administered or underwritten by Blue Cross and Blue Shield of Louisiana and its subsidiary, HMO Louisiana, Inc. (collectively referred to as the “Company”), unless otherwise provided in the applicable contract. Medical technology is constantly evolving, and we reserve the right to review and update Medical Policy periodically.

Services Are Considered Investigational
Coverage is not available for investigational medical treatments or procedures, drugs, devices or biological products.

Based on review of available data, the Company considers measurement of serum biomarker human epididymis protein 4 (HE4) for all indications to be investigational.

Background/Overview
Human epididymis protein 4 is a potential new biomarker that has been cleared by the U.S. Food and Drug Administration (FDA) for monitoring patients with epithelial ovarian cancer. Human epididymis protein 4 is proposed as a replacement for or a complement to CA-125 for monitoring disease progression and recurrence. Human epididymis protein 4 has also been proposed as a test to screen for ovarian cancer in asymptomatic women.

Ovarian cancer is the fifth most common cause of cancer mortality in U.S. women. According to Surveillance Epidemiology and End Results (SEER) data, in 2012 approximately 22,280 women will be diagnosed with ovarian cancer and 15,500 women will die of the disease. Stage at diagnosis is an important predictor of survival; however, most women are not diagnosed until the disease has spread. For the period 1999-2006, 62% of women with ovarian cancer were diagnosed when the disease had distant metastases (Stage IV), and this was associated with a 5-year survival rate of 27.6%. In contrast, the 15% of women diagnosed with localized cancer (Stage 1) had a 5-year survival rate of 93.5%. Epithelial ovarian tumors account for 85–90% of ovarian cancers.

The standard treatment for epithelial ovarian cancer is surgical staging and primary cytoreductive surgery followed by chemotherapy in most cases. There is a lack of consensus about an optimal approach to follow-up patients with ovarian cancer following primary treatment. Patients undergo regular physical examinations. In addition, managing patients with serial measurement of the biomarker CA-125 to detect early recurrence of disease is common. A rising CA-125 level has been found to correlate with disease recurrence and has been found to detect recurrent ovarian cancer earlier than clinical detection. However, a survival advantage of initiating treatment based on early detection with CA-125 has not been demonstrated to date. For example, a randomized controlled trial (RCT) with women in ovarian cancer that was in complete remission did not find a significant difference in overall survival when treatment for remission was initiated when CA-125 concentration exceeded twice the limit of normal compared to delaying treatment initiation until symptom onset.
Serum Biomarker Human Epididymis Protein 4 (HE4)

Archived Medical Policy

Archived medical policies are no longer subject to periodic review, are maintained for reference, and may be returned to active status if the need is identified.

Policy # 00274
Original Effective Date: 10/20/2010
Archived Date: 11/20/2013

Another serum biomarker, cleared by the FDA for monitoring patients with epithelial ovarian cancer, is HE4. Human epididymis protein 4 is made up of 2 whey acidic proteins with a 4 disulfide core domain. It has been found to be overexpressed by epithelial ovarian cancer tumors and to circulate in the serum of patients with epithelial ovarian cancer. Levels of HE4 may be less likely to be elevated due to benign conditions, as is the case with CA-125, which would make HE4 a candidate to replace or complement CA-125. Tests for HE4 are FDA-approved for monitoring women known to have epithelial ovarian cancer. Another possible application of HE4 testing is screening asymptomatic women for ovarian cancer; screening is not an accepted use of the CA-125 test.

FDA or Other Governmental Regulatory Approval

U.S. Food and Drug Administration

In June 2008, the HE4 EIA test kit (Fujirebio Diagnostics, Sweden) was cleared for marketing by the FDA through the 510(k) process. The FDA determined that this device was substantially equivalent to a CA-125 assay kit for use as an aid in monitoring disease progression or recurrence in patients with epithelial ovarian cancer. The FDA-cleared indication states that serial testing for HE4 should be done in conjunction with other clinical methods used for monitoring ovarian cancer. The FDA-cleared indication states that serial testing for HE4 should be done in conjunction with other clinical methods used for monitoring ovarian cancer and that the HE4 test is not intended to assess the risk of disease outcomes.

In March 2010, the ARCHITECT HE4 (Abbott Diagnostics, UK, co-developed with Fujirebio Diagnostics), an automated version of the HE4 EIA test, was cleared by the FDA for the same indications. The ARCHITECT HE4 test is being distributed in the United States by Quest Diagnostics (Madison, NJ).

Rationale/Source

Assessment of a diagnostic technology typically focuses on 3 parameters: 1) technical performance; 2) diagnostic performance (sensitivity, specificity, and positive and negative predictive value) in appropriate populations of patients; and 3) demonstration that the diagnostic information can be used to improve patient outcomes (clinical utility).

Technical performance of a device is typically assessed with 2 types of studies: those that compare test measurements with a gold standard and those that compare results taken with the same device on different occasions (test-retest).

Diagnostic performance is evaluated by the ability of a test to accurately diagnose a clinical condition in comparison with the gold standard. The sensitivity of a test is the ability to detect a disease when the condition is present (true positive), while specificity indicates the ability to detect patients who are suspected of disease but who do not have the condition (true negative). Evaluation of diagnostic performance, therefore, requires independent assessment by the 2 methods in a population of patients who are suspected of disease but who do not all have the disease.
Serum Biomarker Human Epididymis Protein 4 (HE4)
Archived Medical Policy

Archived medical policies are no longer subject to periodic review, are maintained for reference, and may be returned to active status if the need is identified.

Policy # 00274
Original Effective Date: 10/20/2010
Archived Date: 11/20/2013

Evidence related to improvement of clinical outcomes with use of this testing assesses the data linking use of a test to changes in health outcomes (clinical utility). While in some cases, tests can be adequately evaluated using technical and diagnostic performance, when a test identifies a new or different group of patients with a disease; randomized trials are needed to demonstrate impact of the test on the net health outcome.

Literature Review
Technical Performance
The FDA substantial equivalence determination decision summary documents for the HE4 EIA and ARCHITECT HE4 include data on technical performance. For example, the precision of the ARCHITECT HE4 test was accessed at 3 sites; samples were tested in 2 replicates using 2 lots of reagents in 2 separate runs per day for 20 days. Samples included 3 panels of pooled human serum and 3 controls. Total imprecision of the panels ranged from 3.4% to 5.4%. The upper limit of the 95% confidence interval for total imprecision for all samples was 6.1% or lower; this met the predetermined acceptance criteria for imprecision, which was 10% or less. Moreover, the test met acceptance criteria for linearity and stability of samples, as well as observed interference from common endogenous substances (i.e., bilirubin, hemoglobin, and high and low protein concentrations).

Diagnostic Performance
Monitoring Disease Progression and Recurrence in Women with Epithelial Ovarian Cancer
Since CA-125 is considered standard of care for managing patients with ovarian cancer, the literature review addressed the questions of whether the diagnostic performance of HE4 was superior to CA-125 and whether combined testing with HE4 and CA-125 was superior to CA-125 alone.

The FDA documents included information on the diagnostic performance of HE4 for monitoring the progression and recurrence of ovarian cancer. The FDA materials addressed the non-inferiority rather than the superiority of HE4 tests to CA-125. A study reported in the 510(k) substantial equivalence determination decision summary for the HE4 EIA assay evaluated whether this test was non-inferior to the CA-125 test. The study included samples from 80 women with epithelial ovarian cancer who were undergoing serial surveillance of cancer progression. Blood samples were obtained from a large cancer center in the United States; they were not drawn specifically for this study. A total of 354 samples were obtained for the 80 women (women had multiple visits over time). Receiver operating curve (ROC) analysis was used to compare the two assays, and clinical evidence of progression was used as the reference standard. When a positive change in HE4 level (i.e., to indicate disease progression) was defined as a value at least 25% higher than the previous value of the test, the sensitivity of the test was 76/126 (60.3%) and the specificity was 171/228 (75%). (Note that the unit of analysis was the number of samples rather than the number of women.) The area under the curve in the ROC curves was found to be similar (0.725 for HE4 and 0.709 for CA-125, respectively) with overlap in the confidence intervals; according to the authors, this indicated that the HE4 assay was not inferior to the CA-125 assay for detecting cancer progression.
Serum Biomarker Human Epididymis Protein 4 (HE4)

Archived Medical Policy

Archived medical policies are no longer subject to periodic review, are maintained for reference, and may be returned to active status if the need is identified.

Policy # 00274
Original Effective Date: 10/20/2010
Archived Date: 11/20/2013

Another analysis estimated the cut-off values and specificity for the HE4 and CA-125 assays at a fixed sensitivity. The specificity values for CA-125 and HE4 were not statistically different at the respective cut-offs and sensitivities; for example, using a cut-off of 15.4% above the previous value for the HE4 test, the sensitivity of the HE4 was 64.3% and the specificity was 69.3%. The specificity of CA-125 at a matching sensitivity was 70.2%; this used a cut-off for the CA-125 level of an increase of at least 32.8%. These data were also said to confirm that the HE4 EIA test is not inferior to the CA-125 test for detecting ovarian cancer progression.

The 510(k) substantial equivalence determination decision summary for the ARCHITECT HE4 assay reports data from a retrospective study using remnant serial samples from 76 women diagnosed with epithelial ovarian cancer being monitored after completion of chemotherapy. The eligibility criteria included availability of at least 3 serial specimens; samples could have been drawn during and/or after treatment. Clinical determination of disease progression was used as the reference standard. A positive test was defined as an HE4 level that was 14% higher than the previous reading. Using this cut-off, the sensitivity of the assay for detecting progressive disease was 53/99 events (53.5%). The specificity of the assay was 260/331 (78.5%). Of note, the sensitivity is lower than that reported above for the HE4 EIA at a similar specificity, when a cut-off of a 25% increase was used (sensitivity: 60.3% and specificity: 75%).

The FDA documents note that there is no clinically accepted cut-off for use in monitoring cancer progression in epithelial ovarian cancer patients using the HE4 assays. As previously mentioned, a study included in the HE4 EIA assay defined a positive test as a level that is 25% higher than a previous measurement, and a study on the ARCHITECT HE4 test defined a positive test as an increase of at least 14% in the level of HE4. The FDA documents further state that clinicians may decide whether to use the cut-offs in the studies or another cut-off that reflects their own preferences in the tradeoff between sensitivity and specificity.

In 2012, a study was published by Plotti and colleagues in Italy evaluating the ability of HE4 to predict ovarian cancer recurrence. The study included 34 women with radiological suspicion of ovarian cancer recurrence and a comparison group of 34 women with benign adnexal conditions. Serum samples were obtained 24 hours before surgery. All women with suspected ovarian cancer had recurrent disease confirmed at surgery. Human epididymis protein 4 tests were evaluated at 2 cutoffs, greater than 70pmol/L and greater than 150pmol/L. The sensitivity of HE4 at the 70pmol/L cut-off was 74% (25 of 34 cases were identified) and sensitivity of HE4 at the 150pmol/L cut-off was 26% (9 of 34). The specificity was 100% at both cut-offs. In contrast, the sensitivity and specificity of CA-125 were 35% (12 of 34) and 59%, respectively. Using a combination of HE4 at a cut-off of 70pmol/L and CA-125, the sensitivity to detect recurrent ovarian cancer was 76% and the specificity was 100%.
Screening Asymptomatic Women

No published studies were identified that evaluated the diagnostic performance of the HE4 biomarker for screening asymptomatic women for ovarian cancer compared to a reference standard.

A retrospective study published in 2010 by Anderson and colleagues aimed to determine the potential value of using HE4 and other biomarkers in early identification of ovarian cancer in asymptomatic women. The study included 34 women with ovarian cancer and 70 matched controls, all of whom were participating in an unrelated RCT including smokers at increased risk of lung cancer. Blood samples were available for the women between 0 and 18 years before ovarian cancer diagnosis. In descriptive analyses, individual serum markers, including HE4, CA-125, and mesothelin, showed increasing accuracy over time approaching the diagnosis of ovarian cancer. Mean concentrations of these markers, which were measured by visually-read immunoassays, began to increase approximately 3 years before diagnosis but attained detectable levels only within the final year before diagnosis. The study had a small sample size, limiting the ability to conduct quantitative analysis, and included only heavy smokers and therefore may not be representative of the population of women at risk of ovarian cancer.

In 2011, Urban and colleagues retrospectively reviewed preclinical samples to evaluate the potential utility of HE4 and other markers as a secondary screening test in women found to have epithelial ovarian cancer. There were samples from 112 ovarian cancer patients and 706 matched controls. Individuals participated in the Prostate, Lung, Colorectal and Ovarian (PLCO) trial and had been screened annually for 6 years with CA-125. Serum samples to evaluate potential markers were taken from the year proximate to the one in which women were diagnosed with ovarian cancer. (Serum samples were not available for the 4th screen so they were taken from the 3rd year for the women diagnosed with ovarian cancer between the 3rd and 4th screens.) The investigators evaluated the associations between CA-125, HE4, and levels of 5 other markers with malignancy, accounting for increasing CA-125 levels and adjusting for demographic characteristics. Increase in CA-125 levels was associated with statistically significant increases in all of the markers. Levels of HE4 were most elevated, compared to controls i.e. the highest average HE4 level was 4.26 standard deviations above the mean HE4 level in control samples. The utility of HE4 as a biomarker to screen for ovarian cancer along with CA-125 needs to be further evaluated in prospective studies and confirmed in RCTs that evaluate the impact of screening on health outcomes.

Clinical Utility

No prospective studies were identified that compared health outcomes in patients managed with and without HE4 testing, alone or in combination with CA-125 or other disease markers. In addition, no RCTs evaluating the clinical utility of screening asymptomatic women with HE4 were identified.
Serum Biomarker Human Epididymis Protein 4 (HE4)
Archived Medical Policy

Archived medical policies are no longer subject to periodic review, are maintained for reference, and may be returned to active status if the need is identified.

Policy # 00274
Original Effective Date: 10/20/2010
Archived Date: 11/20/2013

Ongoing Clinical Trials
A Trial Using Novel Markers to Predict Malignancy in Elevated-Risk Women (NCT01121640):
This is a RCT comparing 2 epithelial ovarian cancer screening protocols. One strategy involves assessment of CA-125 at every screen and HE4 at a confirmatory screen and the other involves CA-125 and HE4 assessment at every screen. The primary study outcome is the positive predictive value of the 2 screening protocols. The expected date of study completion is June 2014.

Summary
There are limited data on the diagnostic test performance of the HE4 test used to monitor disease progression and recurrence in women after initial treatment for epithelial ovarian cancer. The available data on diagnostic test performance are in FDA documents; the reported studies were small, retrospective, may have included duplicate data on the same women, and used different cut-offs for identifying a recurrence. In general, there is no established cut-off for determining when an HE4 test is positive, when used for identifying disease progression or recurrence. Moreover, a survival advantage of early detection of ovarian cancer recurrence using HE4 levels or other biomarkers has not been established. No published studies were identified evaluating use of the HE4 test to screen asymptomatic women for ovarian cancer. Thus, the HE4 test is considered investigational for all indications.

References

Coding
The five character codes included in the Blue Cross Blue Shield of Louisiana Medical Policy Coverage Guidelines are obtained from Current Procedural Terminology (CPT®), copyright 2012 by the American Medical Association (AMA). CPT is developed by the AMA as a listing of descriptive terms and five character identifying codes and modifiers for reporting medical services and procedures performed by physician.
Serum Biomarker Human Epididymis Protein 4 (HE4)

Archived Medical Policy

Archived medical policies are no longer subject to periodic review, are maintained for reference, and may be returned to active status if the need is identified.

Policy # 00274
Original Effective Date: 10/20/2010
Archived Date: 11/20/2013

The responsibility for the content of Blue Cross Blue Shield of Louisiana Medical Policy Coverage Guidelines is with Blue Cross and Blue Shield of Louisiana and no endorsement by the AMA is intended or should be implied. The AMA disclaims responsibility for any consequences or liability attributable or related to any use, nonuse or interpretation of information contained in Blue Cross Blue Shield of Louisiana Medical Policy Coverage Guidelines. Fee schedules, relative value units, conversion factors and/or related components are not assigned by the AMA, are not part of CPT, and the AMA is not recommending their use. The AMA does not directly or indirectly practice medicine or dispense medical services. The AMA assumes no liability for data contained or not contained herein. Any use of CPT outside of Blue Cross Blue Shield of Louisiana Medical Policy Coverage Guidelines should refer to the most current Current Procedural Terminology which contains the complete and most current listing of CPT codes and descriptive terms. Applicable FARS/DFARS apply.

CPT is a registered trademark of the American Medical Association.

Codes used to identify services associated with this policy may include (but may not be limited to) the following:

<table>
<thead>
<tr>
<th>Code Type</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPT</td>
<td>86305</td>
</tr>
<tr>
<td>HCPCS</td>
<td>No code</td>
</tr>
<tr>
<td>ICD-9 Diagnosis</td>
<td>All diagnoses</td>
</tr>
<tr>
<td>ICD-9 Procedure</td>
<td>No code</td>
</tr>
</tbody>
</table>

Policy History

Original Effective Date: 10/20/2010
10/14/2010 Medical Policy Committee review
10/06/2011 Medical Policy Committee review
10/11/2012 Medical Policy Committee review
10/31/2012 Medical Policy Implementation Committee approval. Policy re-worded to state "measurement of serum biomarker human epididymis protein 4 is investigational for all indications"; bullet points removed. The intent of the policy remains the same.
01/23/2013 Coding updated
10/03/2013 Medical Policy Committee review
10/16/2013 Medical Policy Implementation Committee approval. Coverage eligibility unchanged.

Next Scheduled Review Date: Archived medical policy

*Investigational – A medical treatment, procedure, drug, device, or biological product is Investigational if the effectiveness has not been clearly tested and it has not been incorporated into standard medical practice. Any determination we make that a medical treatment, procedure, drug, device, or biological product is Investigational will be based on a consideration of the following:
Serum Biomarker Human Epididymis Protein 4 (HE4)

Archived Medical Policy

Archived medical policies are no longer subject to periodic review, are maintained for reference, and may be returned to active status if the need is identified.

Policy # 00274
Original Effective Date: 10/20/2010
Archived Date: 11/20/2013

A. whether the medical treatment, procedure, drug, device, or biological product can be lawfully marketed without approval of the U.S. Food and Drug Administration (FDA) and whether such approval has been granted at the time the medical treatment, procedure, drug, device, or biological product is sought to be furnished; or

B. whether the medical treatment, procedure, drug, device, or biological product requires further studies or clinical trials to determine its maximum tolerated dose, toxicity, safety, effectiveness, or effectiveness as compared with the standard means of treatment or diagnosis, must improve health outcomes, according to the consensus of opinion among experts as shown by reliable evidence, including:
 1. Consultation with the Blue Cross and Blue Shield Association technology assessment program (TEC) or other nonaffiliated technology evaluation center(s);
 2. credible scientific evidence published in peer-reviewed medical literature generally recognized by the relevant medical community; or
 3. reference to federal regulations.

‡ Indicated trademarks are the registered trademarks of their respective owners.

NOTICE: Medical Policies are scientific based opinions, provided solely for coverage and informational purposes. Medical Policies should not be construed to suggest that the Company recommends, advocates, requires, encourages, or discourages any particular treatment, procedure, or service, or any particular course of treatment, procedure, or service.