Treatment of Varicose Veins/Venous Insufficiency

Policy # 00034
Original Effective Date: 08/26/2002
Current Effective Date: 01/23/2019

Applies to all products administered or underwritten by Blue Cross and Blue Shield of Louisiana and its subsidiary, HMO Louisiana, Inc. (collectively referred to as the “Company”), unless otherwise provided in the applicable contract. Medical technology is constantly evolving, and we reserve the right to review and update Medical Policy periodically.

SAPHENOUS VEINS

Great or Small Saphenous Veins

When Services May Be Eligible for Coverage

Coverage for eligible medical treatments or procedures, drugs, devices or biological products may be provided only if:

- Benefits are available in the member’s contract/certificate, and
- Medical necessity criteria and guidelines are met.

Based on review of available data, the Company may consider treatment of the great or small saphenous veins by surgery (ligation and stripping), endovenous radiofrequency or laser ablation, or microfoam sclerotherapy for symptomatic varicose veins/venous insufficiency to be eligible for coverage** when the following criteria have been met:

Patient Selection Criteria

Coverage eligibility will be met when all of the following criteria are met:

There is demonstrated saphenous reflux and CEAP [Clinical, Etiology, Anatomy, Pathophysiology] class C2 or greater; AND

There is documentation of one or more of the following indications:

- Ulceration secondary to venous stasis; or
- Recurrent superficial thrombophlebitis; or
- Hemorrhage or recurrent bleeding episodes from a ruptured superficial varicosity; or
- Persistent pain, swelling, itching, burning, or other symptoms are associated with saphenous reflux, AND the symptoms significantly interfere with activities of daily living, and conservative management including compression therapy for at least three months has not improved the symptoms.

When Services Are Considered Not Medically Necessary

Based on review of available data, the Company considers the use of treatment for great or small saphenous veins by surgery, endovenous radiofrequency or laser ablation, or microfoam sclerotherapy that does not meet the criteria described above to be not medically necessary.**
Accessory Saphenous Veins

When Services May Be Eligible for Coverage

Coverage for eligible medical treatments or procedures, drugs, devices or biological products may be provided only if:

- Benefits are available in the member’s contract/certificate, and
- Medical necessity criteria and guidelines are met.

Based on review of available data, the Company may consider treatment of accessory saphenous veins by surgery (ligation and stripping), endovenous radiofrequency or laser ablation, or microfoam sclerotherapy for symptomatic varicose veins/venous insufficiency to be eligible for coverage when the following criteria have been met:

Patient Selection Criteria

Coverage eligibility will be met when all of the following criteria are met:

- Incompetence of the accessory saphenous vein is isolated, OR the great or small saphenous veins had been previously eliminated (at least 3 months); AND
- There is demonstrated accessory saphenous reflux; AND
- There is documentation of one or more of the following indications:
 - Ulceration secondary to venous stasis; or
 - Recurrent superficial thrombophlebitis; or
 - Hemorrhage or recurrent bleeding episodes from a ruptured superficial varicosity; or
 - Persistent pain, swelling, itching, burning, or other symptoms are associated with saphenous reflux, AND the symptoms significantly interfere with activities of daily living, AND conservative management including compression therapy for at least three months has not improved the symptoms.

When Services Are Considered Not Medically Necessary

Based on review on available data, the Company considers treatment of accessory saphenous veins by surgery or endovenous radiofrequency or laser ablation, or microfoam sclerotherapy that does not meet the criteria described above is not medically necessary.

Symptomatic Varicose Tributaries

When Services Are Eligible for Coverage

Coverage for eligible medical treatments or procedures, drugs, devices or biological products may be provided only if:

- Benefits are available in the member’s contract/certificate, and
- Medical necessity criteria and guidelines are met.
Based on review of available data, the Company may consider the following treatments to be eligible for coverage** as a component of the treatment of symptomatic varicose tributaries when performed either at the same time or following prior treatment (surgical, radiofrequency or laser) of the saphenous veins (none of these techniques has been shown to be superior to another):

- Stab avulsion
- Hook phlebectomy
- Sclerotherapy
- Transilluminated powered phlebectomy

When Services Are Considered Investigational

Coverage is not available for investigational medical treatments or procedures, drugs, devices or biological products.

Based on review of available data, the Company considers treatment of symptomatic varicose tributaries when performed either at the same time or following prior treatment of saphenous veins using any other techniques than noted above to be investigational.*

Perforator Veins

When Services May Be Eligible for Coverage

Coverage for eligible medical treatments or procedures, drugs, devices or biological products may be provided only if:

- Benefits are available in the member's contract/certificate, and
- Medical necessity criteria and guidelines are met.

Based on review of available data, the Company may consider surgical ligation (including subfascial endoscopic perforator surgery) or endovenous radiofrequency or laser ablation, or ultrasound-guided microfoam sclerotherapy of incompetent perforator veins as a treatment of leg ulcers associated with chronic venous insufficiency may be considered to be eligible for coverage** when the following conditions have been met:

- There is demonstrated perforator reflux; AND
- The superficial saphenous veins (great, small, or accessory saphenous and symptomatic varicose tributaries) have been previously eliminated; AND
- Ulcers have not resolved following combined superficial vein treatment and compression therapy for at least three months; AND
- The venous insufficiency is not secondary to deep venous thromboembolism.
When Services Are Considered Not Medically Necessary

Based on review on available data, the Company considers ligation or ablation of incompetent perforator veins performed concurrently with superficial venous surgery is considered to be not medically necessary.**

Telangiectasia

Based on review on available data, the Company considers treatment of telangiectasia such as spider veins, angiomata, and hemangiomata cosmetic and is not a covered benefit.

Other

When Services Are Considered Investigational

Coverage is not available for investigational medical treatments or procedures, drugs, devices or biological products.

Based on review of available data, the Company considers techniques for conditions not specifically listed above to be investigational* including, but not limited to:

- Sclerotherapy techniques, other than microfoam sclerotherapy, of greater, small, or accessory saphenous veins
- Sclerotherapy of perforator veins when criteria are not met
- Sclerotherapy of isolated tributary veins without prior or concurrent treatment of saphenous veins
- Stab avulsion, hook phlebectomy, or transilluminated powered phlebectomy of perforator, greater or small saphenous, or accessory saphenous veins
- Endovenous radiofrequency or laser ablation of tributary veins
- Endovenous cryoablation of any vein
- Mechanochemical ablation of any vein
- Cyanoacrylate adhesive of any vein

Note:
The standard classification of venous disease is the CEAP (Clinical, Etiologic, Anatomic, Pathophysiologic) classification system. The following is the Clinical portion of the CEAP.

<table>
<thead>
<tr>
<th>Clinical Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>C0</td>
</tr>
<tr>
<td>C1</td>
</tr>
<tr>
<td>C2</td>
</tr>
<tr>
<td>C3</td>
</tr>
<tr>
<td>C4a</td>
</tr>
</tbody>
</table>

©2019 Blue Cross and Blue Shield of Louisiana

Blue Cross and Blue Shield of Louisiana is an independent licensee of the Blue Cross and Blue Shield Association and incorporated as Louisiana Health Service & Indemnity Company.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without permission from Blue Cross and Blue Shield of Louisiana.
Treatment of Varicose Veins/Venous Insufficiency

Policy # 00034
Original Effective Date: 08/26/2002
Current Effective Date: 01/23/2019

C4b Lipodermatosclerosis and atrophie blanche
C5 Healed venous ulcer
C6 Active venous ulcer
S Symptoms including ache, pain, tightness, skin irritation, heaviness, muscle cramps, as well as other complaints attributable to venous dysfunction
A Asymptomatic

The Etiologic, Anatomic, And Pathophysiologic portions of the classifications are online (http://www.veinforum.org/uploadDocs/1/Revised-CEAP-Classification---May-2004.pdf).

Background/Overview

VENOUS REFLUX/VENOUS INSUFFICIENCY

The venous system of the lower extremities consists of the superficial veins (this includes the great and small saphenous and accessory, or duplicate, veins that travel in parallel with the great and small saphenous veins), the deep system (popliteal and femoral veins), and perforator veins that cross through the fascia and connect the deep and superficial systems. One-way valves are present within all veins to direct the return of blood up the lower limb. Because venous pressure in the deep system is generally greater than that of the superficial system, valve incompetence at any level may lead to backflow (venous reflux) with pooling of blood in superficial veins. Varicose veins with visible varicosities may be the only sign of venous reflux, although itching, heaviness, tension, and pain may also occur. Chronic venous insufficiency secondary to venous reflux can lead to thrombophlebitis, leg ulcerations, and hemorrhage. The CEAP classification considers the clinical, etiologic, anatomic, and pathologic (CEAP) characteristics of venous insufficiency, ranging from class 0 (no visible sign of disease) to class 6 (active ulceration).

Treatment

Treatment of venous reflux/venous insufficiency is aimed at reducing abnormal pressure transmission from the deep to the superficial veins. Conservative medical treatment consists of elevation of the extremities, graded compression, and wound care when indicated. Conventional surgical treatment consists of identifying and correcting the site of reflux by ligation of the incompetent junction followed by stripping of the vein to redirect venous flow through veins with intact valves. While most venous reflux is secondary to incompetent valves at the saphenofemoral or saphenopopliteal junctions, reflux may also occur at incompetent valves in the perforator veins or in the deep venous system. The competence of any single valve is not static and may be pressure-dependent. For example, accessory saphenous veins may have independent saphenofemoral or saphenopopliteal junctions that become incompetent when the great or small saphenous veins are eliminated and blood flow is diverted through the accessory veins.

Saphenous Veins and Tributaries

Saphenous veins include the great and small saphenous and accessory saphenous veins that travel in parallel with the great or small saphenous veins. Tributaries are veins that empty into a larger vein. Treatment of venous reflux typically includes the following:

1. Identification by preoperative Doppler ultrasonography of the valvular incompetence
2. Control of the most proximal point of reflux, traditionally by suture ligation of the incompetent saphenofemoral or saphenopopliteal junction.

3. Removal of the superficial vein from circulation, e.g., by stripping of the great and/or small saphenous veins.

4. Removal of varicose tributaries (at the time of the initial treatment or subsequently) by stab avulsion (phlebectomy) or injection sclerotherapy.

Minimally invasive alternatives to ligation and stripping have been investigated. They include sclerotherapy, transilluminated powered phlebectomy (TIPP), and thermal ablation using cryotherapy, high-frequency radio waves (200-300 kHz), or laser energy.

Thermal Ablation

Radiofrequency ablation is performed using a specially designed catheter inserted through a small incision in the distal medial thigh to within 1 to 2 cm of the saphenofemoral junction. The catheter is slowly withdrawn, closing the vein. Laser ablation is performed similarly; a laser fiber is introduced into the great saphenous vein under ultrasound guidance; the laser is activated and slowly removed, along the course of the saphenous vein. Cryoablation uses extreme cold. The objective of endovenous techniques is to injure the vessel, causing retraction and subsequent fibrotic occlusion of the vein. Technical developments since thermal ablation procedures were initially introduced include the use of perivenous tumescent anesthesia, which allows successful treatment of veins larger than 12 mm in diameter and helps to protect adjacent tissue from thermal damage during treatment of the small saphenous vein.

Sclerotherapy

The objective of sclerotherapy is to destroy the endothelium of the target vessel by injecting an irritant solution (either a detergent, osmotic solution, or chemical irritant), ultimately resulting in the occlusion of the vessel. The success of the treatment depends on accurate injection of the vessel, an adequate injectate volume and concentration of sclerosant, and compression. Historically, larger veins and very tortuous veins were not considered good candidates for sclerotherapy due to technical limitations. Technical improvements in sclerotherapy have included the routine use of Duplex ultrasound to target refluxing vessels, luminal compression of the vein with anesthetics, and a foam/sclerosant injectate in place of liquid sclerosant. Foam sclerosants are commonly produced by forcibly mixing a gas (e.g., air or carbon dioxide) with a liquid sclerosant (e.g., polidocanol or sodium tetradecyl sulfate). The foam is produced at the time of treatment.

Endovenous Mechanochemical Ablation

Endovenous mechanochemical ablation uses both sclerotherapy and mechanical damage to the lumen. Following ultrasound imaging, a disposable catheter with a motor drive is inserted into the distal end of the target vein and advanced to the saphenofemoral junction. As the catheter is pulled back, a wire rotates at 3500 rpm within the lumen of the vein, abrading the lumen. At the same time, a liquid sclerosant (sodium tetradecyl sulfate) is infused near the rotating wire. It is proposed that mechanical ablation allows for better
Cyanoacrylate Adhesive
Cyanoacrylate adhesive is a clear, free-flowing liquid that polymerizes in the vessel via an anionic mechanism (ie, polymerizes into a solid material on contact with body fluids or tissue). The adhesive is gradually injected along the length of the vein in conjunction with ultrasound and manual compression. The acute coaptation halts blood flow through the vein until the implanted adhesive becomes fibrotically encapsulated and establishes chronic occlusion of the treated vein. Cyanoacrylate glue has been used as a surgical adhesive and sealant for a variety of indications, including gastrointestinal bleeding, embolization of brain arteriovenous malformations, and surgical incisions or other skin wounds.

Transilluminated Powered Phlebectomy
TIPP is an alternative to stab avulsion and hook phlebectomy. This procedure uses 2 instruments: an illuminator, which also provides irrigation, and a resector, which has an oscillating tip and suction pump. Following removal of the saphenous vein, the illuminator is introduced via a small incision in the skin and tumescence solution (anesthetic and epinephrine) is infiltrated along the course of the varicosity. The resector is then inserted under the skin from the opposite direction, and the oscillating tip is placed directly beneath the illuminated veins to fragment and loosen the veins from the supporting tissue. Irrigation from the illuminator is used to clear the vein fragments and blood through aspiration and additional drainage holes. The illuminator and resector tips may then be repositioned, thereby reducing the number of incisions needed when compared with stab avulsion or hook phlebectomy. It has been proposed that TIPP might decrease surgical time, decrease complications such as bruising, and lead to faster recovery than established procedures.

Treatment of Perforator Veins
Perforator veins cross through the fascia and connect the deep and superficial venous systems. Incompetent perforating veins were originally treated with an open surgical procedure, called the Linton procedure, which involved a long medial calf incision to expose all posterior, medial, and paramedial perforators. While this procedure was associated with healing of ulcers, it was largely abandoned due to a high incidence of wound complications. The Linton procedure was subsequently modified by using a series of perpendicular skin flaps instead of a longitudinal skin flap to provide access to incompetent perforator veins in the lower part of the leg. The modified Linton procedure may occasionally be used to close incompetent perforator veins that cannot be reached by less invasive procedures.

Subfascial endoscopic perforator surgery is a less invasive surgical procedure for treatment of incompetent perforators and has been reported since the mid-1980s. Guided by Duplex ultrasound scanning, small incisions are made in the skin, and the perforating veins are clipped or divided by endoscopic scissors. The
surgery can be performed as an outpatient procedure. Endovenous ablation of incompetent perforator veins with sclerotherapy and RFA has also been reported.

FDA or Other Governmental Regulatory Approval

U.S. Food and Drug Administration (FDA)

In 2015, the VenaSeal® Closure System (Sapheon, part of Medtronic) was approved by the U.S. FDA through the premarket approval (PMA P140018) process for the permanent closure of clinically significant venous reflux through endovascular embolization with coaptation. The VenaSeal Closure System seals the vein using a cyanoacrylate adhesive agent. FDA product code: PJQ.

In 2013, Varithena™ (formerly known as Varisolve®; BTG, London), a sclerosant microfoam made with a proprietary gas mix, was approved by FDA under a new drug application (NDA 205-098) for the treatment of incompetent great saphenous veins, accessory saphenous veins, and visible varicosities of the great saphenous vein system above and below the knee.

The following devices were cleared for marketing by FDA through the 501(k) process for endovenous treatment of superficial vein reflux:

- In 1999, the VNUS® Closure™ System, a radiofrequency device, was cleared by FDA through the 510(k) process for "endovascular coagulation of blood vessels in patients with superficial vein reflux." In 2005, the VNUS RFS™ and RFSFlex™ devices were cleared by FDA for "use in vessel and tissue coagulation including: treatment of incompetent (ie, refluxing) perforator and tributary veins." In 2008, the modified VNUS ClosureFast™ Intravascular Catheter was cleared by FDA through the 510(k) process. FDA product code: GEI.
- In 2002, the Diomed 810 nm surgical laser and EVLT™ (endovenous laser therapy) procedure kit was cleared by FDA through the 510(k) process "...for use in the endovascular coagulation of the great saphenous vein of the thigh in patients with superficial vein reflux." FDA product code: GEX.
- In 2005, a modified Erbe Erbokryo® cryosurgical unit (Erbe USA) was approved by FDA for marketing. A variety of clinical indications are listed, including cryoablation of varicose veins of the lower limbs. FDA product code: GEH.
- In 2003, the Trivex™ system (InaVein), a device for transilluminated powered phlebectomy, was cleared by FDA through the 510(k) process for "ambulatory phlebectomy procedures for the resection and ablation of varicose veins." FDA product code: DNQ.
- In 2008, the ClariVein® Infusion Catheter (Vascular Insights) was cleared by FDA through the 510(k) process (K071468) for mechanochemical ablation. FDA determined that this device was substantially equivalent to the Trellis® Infusion System (K013635) and the Slip-Cath® Infusion Catheter (K882796). The system includes an infusion catheter, motor drive, stopcock, and syringe, and is intended for the infusion of physician-specified agents in the peripheral vasculature. FDA product code: KRA.

©2019 Blue Cross and Blue Shield of Louisiana

Blue Cross and Blue Shield of Louisiana is an independent licensee of the Blue Cross and Blue Shield Association and incorporated as Louisiana Health Service & Indemnity Company.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without permission from Blue Cross and Blue Shield of Louisiana.
Centers for Medicare and Medicaid Services (CMS)
There is no national coverage determination (NCD). In the absence of an NCD, coverage decisions are left to the discretion of local Medicare carriers.

Rationale/Source
Outcomes of interest for venous interventions include healing and recurrence, recannulation of the vein, and neovascularization. Recanalization is the restoration of the lumen of a vein after it has been occluded; this occurs more frequently following treatment with endovenous techniques. Neovascularization is the proliferation of new blood vessels in tissue and occurs more frequently following vein stripping. Direct comparisons of the durability for endovenous and surgical procedures are complicated by these mechanisms of recurrence. Relevant safety outcomes include the incidence of paresthesia, thermal skin injury, thrombus formation, thrombophlebitis, wound infection, and transient neurologic effects.

The following section addresses the efficacy of the conventional treatments, specifically on the appropriate length of a trial of compression therapy and evaluation of recurrence rates for surgical treatment (ie, ligation and stripping) compared to compression therapy.

CONVENTIONAL TREATMENT OF SAPHENOUS REFLUX
Compression Therapy
A 2009 Cochrane review on compression for venous leg ulcers included 39 randomized controlled trials (RCTs) with 47 different comparisons. The review was updated in 2012, and included 48 RCTs with 59 different comparisons. Most of the RCTs were small. Objective measures of healing were the time to complete healing, the proportion of ulcers healed within the trial period (typically 12 weeks), the change in ulcer size, and the rate of change in ulcer size. Evidence from 8 trials indicated that venous ulcers healed more rapidly with compression than without. Findings suggested that multicomponent systems (bandages or stockings) were more effective than single-component compression. In addition, multicomponent systems containing an elastic bandage appeared more effective than those composed mainly of inelastic constituents. Although these meta-analyses did not include time to healing, studies included in the review reported that the mean time to ulcer healing was approximately 2 months, while the median time to healing in other reports was 3 to 5 months.

A Cochrane review on compression stockings for the initial treatment of varicose veins in patients without venous ulceration was published in 2011. Selected for the review were 7 studies involving 356 participants with varicose veins without healed or active venous ulceration CEAP (class C2-C4). Six of the studies compared different types or pressures of stockings. Subjectively, participants’ symptoms improved, but results were not compared with a control arm. Due primarily to inadequate reporting, the methodologic quality of the selected trials was unclear. Meta-analyses were not performed due to inadequate reporting and suspected heterogeneity. Reviewers concluded that there was insufficient high-quality evidence to determine whether compression stockings were effective as the sole and initial treatment of varicose veins in patients without venous ulceration, or whether any type of stocking was superior to another type.
Ligation and Stripping

Systematic literature reviews have indicated a similar healing rate of venous ulcers with superficial vein surgery and conservative compression treatments but a reduction in ulcer recurrence rate with surgery. In general, recurrence rates after ligation and stripping are estimated at 20% in short-term follow-up. Jones et al (1996) reported on the results of a trial that randomized 100 patients with varicose veins to ligation alone or to ligation plus stripping. At 1 year, reflux was detected in 9% of patients, rising to 26% at 2 years. Rutgers and Kitslaar (1994) reported on the results of a trial that randomized 181 limbs to ligation and stripping or to ligation plus sclerotherapy. At 2 years, Doppler ultrasound demonstrated reflux in approximately 10% of patients after ligation and stripping, increasing to 15% at 3 years.

ENDOVENOUS THERMAL ABLATION (LASER OR RADIOFREQUENCY)

Systematic Reviews

An updated Cochrane review from 2014 compared endovenous ablation (radiofrequency and laser) plus foam sclerotherapy with ligation and stripping for saphenous vein varices. Included in the review were 13 randomized studies (total N=3081 patients). The overall quality of the evidence was moderate. There was no significant difference between sclerotherapy and surgery in the rate of recurrence, as rated by clinicians (odds ratio [OR], 1.74; p=0.06) or for symptomatic recurrence (OR=1.28). For endovenous laser ablation versus surgery, there were no significant differences between the treatment groups for clinician-reported or symptomatic recurrence, or for recanalization. Neovascularization and technical failure were reduced in the laser group (OR=0.05, p<0.001; OR=0.29, p<0.001, respectively). For endovenous RFA versus surgery, there were no significant differences between groups in clinician-reported recurrence, recanalization, neovascularization, or technical failure. Reviewers concluded that sclerotherapy, endovenous laser ablation, and RFA are at least as effective as surgery in the treatment of great saphenous varicose veins.

A 2016 Cochrane review compared endovenous laser ablation or RFA to surgical repair for short saphenous veins with reflux at the saphenopopliteal junction. Three RCTs identified compared endovenous laser ablation with surgery. There was moderate-quality evidence that recanalization or persistence of reflux at 6 weeks occurred less frequently after endovenous laser ablation than after surgery (OR=0.07; 95% confidence interval [CI], 0.02 to 0.22), and low-quality evidence that recurrence of reflux was lower after endovenous laser ablation at 1 year (OR=0.24; 95% CI, 0.07 to 0.77).

Randomized Controlled Trials

The largest RCT is a 2014 trial by Brittenden et al that compared foam sclerotherapy, endovenous laser ablation, and surgical treatment in 798 patients. The trial was funded by the U.K.’s National Institute for Health Research. Veins greater than 15 mm in diameter were excluded from the trial. At the 6-week follow-up visit, patients assigned to treatment with foam or laser had the option of treatment with foam for any residual varicosities; this was performed in 38% of patients in the foam group and in 31% of patients in the endovenous laser ablation group. Disease-specific quality of life (QOL) was similar for the laser and surgery groups. The frequency of procedural complications was similar for the foam sclerotherapy (6%) and surgery (7%) groups, but was lower for the laser group (1%).
The 2012 RELACS study randomized 400 patients to endovenous laser ablation performed by a surgeon at 1 site or to ligation and stripping performed by a different surgeon at a second location. At 2-year follow-up, there were no significant differences between the groups for clinically recurrent varicose veins, medical condition on the Homburg Varicose Vein Severity Score, or disease-related QOL. Saphenofemoral reflux was detected by ultrasonography more frequently after endovenous laser treatment (17.8% vs 1.3%). The follow-up rate at 5 years was 81%. Same-site recurrences were more frequent in the endovenous laser ablation group (18% with endovenous laser ablation vs 5% with surgery, p=0.002), but different-site recurrences were more frequent in the surgically treated group (50% with surgery vs 31% with endovenous laser ablation, p=0.002). Overall, there was no significant difference in recurrence rates between the groups. There were also no significant differences between groups in disease severity or QOL at 5 years.

Christenson et al (2010) compared endovenous laser ablation with ligation and stripping in 200 limbs (100 in each group). At 1-year follow-up, 98% of the limbs were reported to be free of symptoms. At 2-year follow-up, the endovenous laser ablation group had 2 veins completely reopened and 5 partially reopened, which was significantly greater than in the ligation and stripping group. In the 2013 MAGNA trial, 223 consecutive patients (240 legs) with great saphenous vein reflux were randomized to endovenous laser ablation, ligation and stripping, or foam sclerotherapy. At 1-year follow-up, the anatomic success rates were similar between endovenous laser ablation (88.5%) and stripping (88.2%), which were superior to foam sclerotherapy (72.2%). Ten percent of the stripping group showed neovascularization. At 5 years, health-related QOL and CEAP classification improved in all groups with no significant differences among them. Grade I neovascularization was higher in the conventional surgery group (27% vs 3%, p<0.001), while grade II neovascularization did not differ significantly between surgical (17%) and endovenous laser ablation (13%) groups.

Literature on isolated treatment of the anterior accessory saphenous vein is limited. In a 2009 study, outcomes from a cohort of 33 patients who underwent endovenous laser ablation of the anterior accessory saphenous vein were compared with 33 matched controls undergoing endovenous laser ablation of the great saphenous vein. In 21 (64%) of the patients in the accessory saphenous vein group, there had been no previous treatment of the great saphenous vein. At 12-month follow-up, there was no evidence of reflux in these patients, and the treated accessory saphenous vein was not visible with ultrasound. Aberdeen Varicose Veins Questionnaire (AVVQ) scores had improved in both groups, with no significant difference between the 2 groups. Patient satisfaction scores were also similar.

Section Summary: Endovenous Thermal Ablation (Laser or Radiofrequency)
There are a number of large RCTs and systematic reviews of RCTs on endovenous ablation with radiofrequency or laser energy of the saphenous veins. Comparison with ligation and stripping at 2- to 5-year follow-up has indicated similar recurrence rates for the different treatments. Evidence has suggested that ligation and stripping may lead to neovascularization, while thermal ablation may lead to recanalization, resulting in similar outcomes for endovenous thermal ablation and surgery.
SCLEROTHERAPY

Physician-Compounded Sclerotherapy

Hamann et al (2017) conducted a meta-analysis of RCTs reporting 5-year follow-up. The meta-analysis (3 RCTs, 10 follow-up studies) included 611 legs treated with endovenous laser ablation, 549 treated with high ligation and stripping, 121 with sclerotherapy, and 114 with high ligation and endovenous laser ablation. Ultrasound-guided sclerotherapy had significantly worse outcomes than the other 3 treatments, with anatomic success rates of 34% for sclerotherapy compared with 83% to 88% for the other 3 treatments (p<0.001).

In the 2013 MAGNA trial (previously described), 223 consecutive patients (240 legs) with great saphenous vein reflux were randomized to endovenous laser ablation, ligation and stripping, or physician-compounded foam sclerotherapy (1 mL aethoxysclerol 3%; 3 cc air). At 1-year follow-up, the anatomic success rate of foam sclerotherapy (72.2%) was inferior to both endovenous laser ablation (88.5%) and stripping (88.2%). Twenty-one patients in the sclerotherapy group had partial occlusion with reflux, though the clinical complaint was completely relieved. At 5-year follow-up, obliteration or absence of the great saphenous vein was observed in only 23% of patients treated with sclerotherapy compared with 85% of patients who underwent conventional surgery and 77% of patients who underwent endovenous laser ablation. Thirty-two percent of legs treated initially with sclerotherapy required 1 or more reinterventions during follow-up compared with 10% in the conventional surgery and endovenous laser ablation groups. However, clinically relevant grade II neovascularization was higher in the conventional surgery (17%) and endovenous laser ablation (13%) groups than in the sclerotherapy group (4%). EuroQol-5D scores improved equally in all groups.

A 2012 study was a noninferiority trial comparing foam sclerotherapy with ligation and stripping in 430 patients. Analysis was per protocol. Forty (17%) patients had repeat sclerotherapy. At 2 years, the probability of clinical recurrence was similar in the 2 groups (11.3% sclerotherapy vs 9.0% ligation and stripping), although reflux was significantly more frequent in the sclerotherapy group (35% vs 21%). Thrombophlebitis occurred in 7.4% of patients after sclerotherapy. There were 2 serious adverse events in the sclerotherapy group (deep venous thrombosis and pulmonary emboli) that occurred within 1 week of treatment.

Microfoam Sclerotherapy

In 2013, polidocanol (Varithena) microfoam was approved under a new drug application for the treatment of varicose veins. Efficacy data derived from 2 randomized, blinded, multicenter studies. One compared polidocanol at 0.5%, 1.0%, and 2.0% with endovenous placebo or a subtherapeutic dose of polidocanol foam. The primary end point was improvement in symptoms at week 8, as measured by the Varicose Vein Symptoms Questionnaire. The improvement in symptoms was greater in the pooled polidocanol treatment group (p<0.001) and in each of the individual dose-concentration groups compared with vehicle alone. Secondary and tertiary end points (appearance, duplex ultrasound response, QOL) were also significantly better for the polidocanol groups compared with controls. This second study, called VANISH-2, was
published in 2014. At the 8-week assessment, there was elimination of reflux and/or occlusion of the previously incompetent vein in 85.6% of the combined 0.5% and 1.0% groups, 59.6% of patients in the 0.125% group, and 1.8% of the placebo group. Analysis of data from both studies showed a dose response from 0.5% to 2.0% for improvement in appearance and from 0.5% to 1.0% for Duplex responders. The polidocanol 1.0% dose was selected for the U.S. FDA approval. Safety analysis found deep vein thrombosis detected by ultrasound in 2.8% of polidocanol-treated patients, with 1% of patients having proximal symptomatic thrombi; these patients were treated with anticoagulants. There was no sign of an increase in neurologic adverse events, and there were no adverse cardiac or cardiopulmonary effects following treatment with polidocanol injectable foam. Rates of occlusion with Varithena are similar to those reported for endovenous laser ablation or stripping. A randomized trial comparing endovenous laser ablation and stripping with this new preparation of foam sclerotherapy is needed to evaluate its comparative effectiveness. Evaluation out to 5 years is continuing.

Vasquez et al (2017) reported on a double-blinded RCT that evaluated the addition of polidocanol microfoam to endovenous thermal ablation. A total of 117 patients who were candidates for both endovenous thermal ablation and treatment of visible varicosities received endovenous thermal ablation plus placebo (n=38) or polidocanol 0.5% (n=39) or 1% (n=40). At 8-week follow-up, physician-blinded vein appearance was significantly better with the combined polidocanol groups (p=0.001), but the improvement in patient ratings was not statistically significant. At 6-month follow-up, the percentages of patients who achieved a clinically meaningful change were significantly higher in both physician (70.9% vs 42.1%, p=0.001) and patient (67% vs 50%, p=0.034) ratings. The proportion of patients who received additional treatment for residual varicosities between week 8 and month 6 was modestly reduced (13.9% for the polidocanol vs 23.7% for placebo, p=0.037).

Section Summary: Sclerotherapy

For physician-compounded sclerotherapy, there is high variability in success rates of the procedure and some reports of serious adverse events. By comparison, rates of occlusion with the FDA-approved microfoam sclerotherapy (polidocanol 1%) are similar to those reported for endovenous laser ablation or stripping. Results of a noninferiority trial of physician-compounded sclerotherapy have indicated that, once occluded, recurrence rates at 2 years are similar to those of ligation and stripping. The addition of polidocanol microfoam to endovenous thermal ablation does not appear to improve health outcomes substantially.

MECHANOChemICAL ABLATION

Randomized Trials

Two publications (Bootun et al [2016], Lane et al [2017]) reported on early results from an RCT of 170 patients that compared ClariVein with RFA (see Table 1). Maximum visual analog scale pain scores (out of 100) during the procedure were significantly lower in the mechanochemical ablation group (median, 15 mm) than in the RFA group (median, 34 mm; p=0.003). Average visual analog scale pain scores during the procedure were also modestly lower in the mechanochemical ablation group (median, 10 mm) than in the
RFA group (median, 19.5 mm; p=0.003). Occlusion rates, clinical severity scores, disease-specific QOL, and generic QOL scores were similar between groups at 1 and 6 months. However, only 71% of patients were available for follow-up at 6 months, limiting the evaluation of closure rates at this time point (see Table 2). The second randomized trial (Lam et al [2016]) reported interim results of a dose-finding study, finding greater closure with use of polidocanol 2% or 3% (liquid) than with polidocanol 1% (microfoam).

Table 1. Relevance Gaps

<table>
<thead>
<tr>
<th>Study</th>
<th>Population*</th>
<th>Interventionb</th>
<th>Comparatorc</th>
<th>Outcomesd</th>
<th>Follow-Up*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bootun et al (2016)</td>
<td>1. Intended use population unclear; 2. Clinical context is unclear; 3. Study population is unclear; 4. Study population not representative of intended use.</td>
<td>1. Primary outcome was pain during the procedure</td>
<td>1. Outcomes only out to 6 mo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lane et al (2017)</td>
<td>1. Not clearly defined; 2. Delivery not similar intensity as comparator; 4. Not the intervention of interest.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The evidence gaps stated in this table are those notable in the current review; this is not a comprehensive gaps assessment.

Table 2. Study Design and Conduct Gaps

<table>
<thead>
<tr>
<th>Study</th>
<th>Allocationa</th>
<th>Blindingb</th>
<th>Selective Reportingc</th>
<th>Follow-Upd</th>
<th>Powere</th>
<th>Statisticalf</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bootun et al (2016)</td>
<td>1. Patients not blinded to treatment (assessors of duplex ultrasound were blinded)</td>
<td>1. 76% follow-up at 1 mo and 71% follow-up at 6 mo</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The evidence gaps stated in this table are those notable in the current review; this is not a comprehensive gaps assessment.

©2019 Blue Cross and Blue Shield of Louisiana
Systematic Reviews
Systematic reviews have included both of the 2 trials described above and within-subject comparisons. Sun et al (2017) included the 2 trials described above and 11 reports from prospective observational within-subjects comparisons. They found mechnochemical endovenous ablation to be effective in the short-term with minimal complications, but lack of outcomes standardization precluded comparison with other techniques. Potential sources of bias in studies assessed included patient self-selection and lack of blinding, combined with subjective patient-reported outcomes measures. Overall, the quality of evidence was rated as low or very low.

By comparison, Witte et al (2017) evaluated 13 studies with 10 cohorts (1521 veins) using to the MINORS study rating score. The trials by Bootun et al (2016) and Lane et al (2017) as well as Lam et al ([2016] described above) were rated as good quality. All studies were considered to have appropriate endpoints, unbiased assessment, and appropriate follow-up periods. Limitations of some studies included nonconsecutive enrollment, retrospective designs, and losses to follow-up of greater than 5%. None of the studies was designed to compare success with endothermal ablation. In the available cohort studies, short-term anatomic success ranged from 87% to 92% for the veins, with success rates of 91% (n=136; 95% CI, 85% to 95%) at 2 years and 87% (n=48; 95% CI, 75% to 94%) at 3 years. The longest follow-up study reported anatomic success (closure rates) of 87% at 3 years but with slightly lower clinical success (83%).

Section Summary: Mechanochemical Ablation
Mechanochemical ablation is a combination of liquid sclerotherapy and mechanical abrasion. The evidence on mechanochemical ablation includes an RCT with short-term results that compared mechanochemical ablation with RFA and case series with follow-up out to 3 years. The short-term results of the RCT suggested that intraprocedural pain is slightly lower with mechanochemical ablation than with RFA. However, mechanochemical ablation has been assessed in relatively few patients and for short durations. Longer follow-up in RCTs with a larger number of patients is needed to evaluate the efficacy and durability of this procedure compared with established procedures.

CYANOACRYLATE ADHESIVE
The VenaSeal pivotal study (VeClose), a multicenter noninferiority trial with 222 patients, compared VenaSeal with RFA for the treatment of venous reflux. The primary end point (the proportion of patients with complete closure of the target great saphenous vein at 3 months measured by ultrasound) was noninferior to RFA, with a 99% closure rate for VenaSeal compared with 96% for RFA. The secondary end point (intraoperative pain) was similar for both groups (2.2 on a 10-point scale for VenaSeal vs 2.4 for RFA, p=0.11). Ecchymosis at day 3 was significantly lower in the cyanoacrylate group; 67.6% of patients treated with cyanoacrylate had no ecchymosis compared with 48.2% of patients following RFA (p<0.01). Scores on the AVVQ and Venous Clinical Severity Score improved to a similar extent in both groups. The mean time to return to work in a prospective cohort of 50 patients reported by Gibson and Ferris (2017) was 0.2 days.30 Eroglu et al (2017) reported closure rates of 94.1% at 30 months in a prospective cohort of 159 patients. Thirty-three-month follow-up was reported by Zierau (2015) for 467 (58.7%) of 795 veins treated at 1...
Treatment of Varicose Veins/Venous Insufficiency

Policy # 00034
Original Effective Date: 08/26/2002
Current Effective Date: 01/23/2019

Institution in Germany. An inflammatory reddening of the skin was observed at 1 week posttreatment in 11.7% of cases. No permanent skin responses were observed. Of the 467 veins reexamined, the sealing rate was 97.7%. This series had a high loss to follow-up.

Section Summary: Cyanoacrylate Adhesive
Evidence assessing cyanoacrylate adhesive for the treatment of varicose veins and venous insufficiency includes a multicenter noninferiority trial with 3 months of follow-up and case series with longer follow-up. The short-term efficacy of cyanoacrylate adhesive has been shown to be noninferior to RFA at 3 months. Longer follow-up in trials with a larger number of patients is needed to determine the durability of this treatment.

CRYOABLATION
Klem et al (2009) reported on a randomized trial that found endovenous cryoablation (n=249) to be inferior to conventional stripping (n=245) for treating patients with symptomatic varicose veins. Forty-four percent of patients had residual great saphenous vein remaining with cryoablation while 15% had residual vein remaining with conventional stripping. AVVQ scores also showed better results for conventional stripping (score, 11.7) than cryoablation (score, 8.0). There were no differences between groups in 36-Item Short-Form Health Survey summary scores or neural damage (12% in both groups).

Disselhoff et al (2008, 2011) reported on 2- and 5-year outcomes from a randomized trial that compared cryotherapy with endovenous laser ablation. Included were 120 patients with symptomatic uncomplicated varicose veins (CEAP class C2) with saphenofemoral incompetence and great saphenous vein reflux. At 10 days after treatment, endovenous laser ablation provided better results than cryoablation with respect to pain scores over the first 10 days (2.9 vs 4.4), resumption of normal activity (75% vs 45%), and induration (15% vs 52%), all respectively. At 2-year follow-up, freedom from recurrent incompetence was observed in 77% of patients after endovenous laser ablation and in 66% of patients after cryoablation (p=NS). At 5 years, 36.7% of patients were lost to follow-up; freedom from incompetence and neovascularization were found in 62% of patients treated with endovenous laser ablation and in 51% of patients treated with cryoablation (p=NS). Neovascularization was more common after cryoablation, but incompetent tributaries were more common after endovenous laser ablation. There were no significant differences between groups in the Venous Clinical Severity Score or AVVQ scores at either the 2 or 5-month follow-ups for endovenous laser ablation.

Section Summary: Cryoablation
Two RCTs have suggested that cryotherapy is ineffective for treating varicose veins compared with available alternatives.
Tributary Varicosities

Sclerotherapy and Phlebectomy

Early studies established ligation and stripping as the criterion standard for treating saphenofemoral incompetence based on improved long-term recurrence rates, with sclerotherapy used primarily as an adjunct to treat varicose tributaries. A Cochrane review by Tisi et al (2006), based primarily on RCTs from the 1980s, concluded that: "The evidence supports the current place of sclerotherapy in modern clinical practice, which is usually limited to treatment of recurrent varicose veins following surgery and thread veins." Sclerotherapy and phlebectomy are considered appropriate in the absence of reflux of the saphenous system (eg, post- or adjunctive treatment to other procedures such as surgery). El-Sheikha et al (2014) reported on a small randomized trial of concomitant or sequential (if needed) phlebectomy following endovenous laser ablation for varicose veins. QOL and clinical severity scores were similar between the groups by 1 year, with 16 (67%) of 24 patients in the sequential phlebectomy group receiving a secondary intervention.

The bulk of the literature discussing the role of ultrasound guidance refers to sclerotherapy of the saphenous vein, as opposed to the varicose tributaries. For example, Yamaki et al (2012) reported on a prospective RCT that compared visual foam sclerotherapy plus ultrasound-guided foam sclerotherapy of the great saphenous vein with visual foam sclerotherapy for varicose tributary veins. Fifty-one limbs in 48 patients were treated with ultrasound-guided foam sclerotherapy plus visual foam sclerotherapy of the varicose tributaries, and 52 limbs in 49 patients were treated with foam sclerotherapy alone. At 6-month follow-up, complete occlusion was found in 23 (45.1%) limbs treated with ultrasound plus visually guided foam sclerotherapy and in 22 (42.3%) limbs treated with visual sclerotherapy alone. Reflux was absent in 30 (58.8%) limbs treated with ultrasound plus visual guidance and in 37 (71.2%) treated with visual guidance alone (p=NS). The authors noted that, for the treatment of tributary veins in clinical practice, most patients receive a direct injection of foam without ultrasound guidance.

A small proportion of patients may present with tributary varicosities in the absence of saphenous reflux. For example, as reported by Michaels et al (2006), of 109 patients recruited for an RCT, 64 patients had minor varicose veins without reflux, 34 of whom agreed to be randomized to sclerotherapy or conservative treatment. At baseline, 92% had symptoms of heaviness, 69% had cosmetic concerns, 53% reported itching, and 30% reported relief of symptoms using compression hosiery. At 1-year follow-up, there was an improvement in clinicians’ assessment of the anatomic extent of varicose veins, with 85% of patients in the sclerotherapy group showing improvement compared with 29% of patients in the conservative therapy group. Symptoms of aching were milder or eliminated in 69% of the sclerotherapy group and 28% of the group treated with conservative therapy.

Transilluminated Powered Phlebectomy

A meta-analysis by Luebke and Brunkwall (2008) included 5 studies that compared transilluminated powered phlebectomy (TIPP) with conventional surgery. Results showed a significant advantage of TIPP over the conventional treatment for the number of incisions, mean cosmetic score, and duration of the
procedure. However, TIPP also increased the incidence of hematoma and resulted in worse mean pain scores. Included in the meta-analysis was an RCT by Chetter et al (2006) that compared TIPP (n=29) with a multiple stab incision procedure (n=33). A single surgeon performed all but 2 of the procedures, and there was no difference in operating time. Patients treated with TIPP had an average of 5 incisions, compared with 20 for the multiple stab procedure. However, the blinded evaluation revealed that bruising or discoloration was higher for the TIPP group at 1 and 6 weeks postsurgery. At 6 weeks after surgery, patients in the TIPP group showed no reductions in pain (-2 points on the Burford Pain Scale), while patients in the multiple stab incision group had a significant reduction in pain scores compared with presurgical baseline (-20 points). Six weeks postsurgery, QOL measures had improved in the multiple stab incision group but not in the TIPP group. Thus, although TIPP required fewer surgical incisions, in this single-center study, it was associated with longer recovery due to more extensive bruising, prolonged pain, and reduced early postoperative QOL.

Section Summary: Tributary Varicosities
The evidence on the use of stab avulsion, sclerotherapy, and phlebectomy includes RCTs and systematic reviews of RCTs. The literature has indicated that sclerotherapy is effective for the treatment of tributary veins following occlusion of the saphenofemoral or saphenopopliteal junction and saphenous veins. No studies have been identified comparing RFA or laser ablation of tributary veins with standard procedures (microphlebectomy and/or sclerotherapy). TIPP is effective at removing varicosities; outcomes are comparable with available alternatives such as stab avulsion and hook phlebectomy. However, there is limited evidence that TIPP is associated with more pain, bruising, discoloration, and a longer recovery, and the current literature does not show an advantage of TIPP over conventional treatment.

Perforator Reflux
A systematic literature review by O’Donnell (2008) indicated that there was a lack of evidence on the role of incompetent perforator vein surgery performed in conjunction with superficial saphenous vein surgery. These conclusions were based on 4 RCTs published since 2000 that compared superficial vein surgery with conservative therapy for advanced chronic venous insufficiency (CEAP classes C5-C6). The 4 trials included 2 level I (large subject population) and 2 level II (small subject population) studies. Two trials combined surgical treatment of the incompetent perforator veins with concurrent or prior treatment of the superficial saphenous veins; the other 2 treated the great saphenous vein alone. The 2 randomized studies (2004, 2007) in which the great saphenous vein alone was treated (including the ESCHAR trial) showed a significant reduction in ulcer recurrence compared with conservative therapy. A community hospital–based multicenter, double-blind, randomized trial reported by Nelzen and Fransson (2011) found no clinical benefit (self-reported symptoms) from adding subfascial endoscopic perforator surgery to saphenous surgery in 75 patients with varicose ulcers (CEAP classes C5-C6) and incompetent perforators.

Treatment of the great saphenous vein alone has been reported to improve perforator function. For example, Blomgren et al (2005) showed that reversal of perforator vein incompetence (28 [41%] of 68 previously incompetent perforators) was more common than new perforator vein incompetence (41 [22%] of
183 previously competent perforators) following superficial vein surgery. O'Donnell (2008) discussed additional (lower quality) evidence to suggest deep venous valvular involvement rather than incompetent perforators in venous insufficiency. Thus, although incompetence of perforator veins is frequently cited as an important etiologic factor in the pathogenesis of venous ulcer, current evidence does not support the routine ligation or ablation of perforator veins.

Subfascial Endoscopic Perforator Surgery

Tenbrook et al (2004) reviewed the literature on subfascial endoscopic perforator surgery, which included 19 case series and 1 randomized trial. In total, the selected studies included 1031 patients with 1140 treated limbs. Reviewers concluded that subfascial endoscopic perforator surgery was associated with excellent results regarding ulcer healing and prevention of recurrence. However, they also noted that randomized trials are required to define the relative contributions of compression therapy, superficial venous surgery, and subfascial endoscopic perforator surgery in the management of severe venous disease. Van Gent et al (2015) reported on 10-year follow-up from a randomized trial that compared conservative treatment with subfascial endoscopic perforator surgery for venous leg ulcers. Patients (196 legs) returned to the clinic annually, and analysis was conducted with the last-observation carried forward. The primary outcome (incidence ulcer-free) was significantly higher in the surgical group (58.9%) than in the conservative treatment group (39.6%; p=0.007). The number of incompetent perforator veins at follow-up was a risk factor for not being ulcer-free (OR=18.5, p<0.001). The relatively high rate of recurrence in the surgically treated group might have been due to limited or no stripping of the superficial veins at the time of subfascial endoscopic perforator surgery.

In a meta-analysis of subfascial endoscopic perforator surgery for chronic venous insufficiency, Luebke and Brunkwall (2009) concluded that “Its use should not be employed routinely and could only be justified in patients with persistent ulceration thought to be of venous origin, and in whom any superficial reflux has already been ablated and postthrombotic changes excluded.” Reviewers also stated that the “introduction of less invasive techniques for perforator vein ablation, such as ultrasound-guided sclerotherapy or radiofrequency ablation, may diminish the role of subfascial endoscopic perforator surgery in the future.”

Other Treatments

In a review of procedures for management of varicose veins, Hirsch and Dillavou (2008) recommended duplex-guided foam sclerotherapy, microincision phlebectomy, or thermal ablation using a short RFA catheter for the treatment of symptomatic residual perforator vein incompetence. Ablation of incompetent perforator veins with laser or RFA has been shown to be technically feasible, although no studies have been identified that showed improvements in clinical outcomes (eg, ulcer healing or recurrence). A literature update by Hissink et al (2010) identified 1 study of endovenous laser ablation for perforating veins assessing 33 patients with CEAP classifications of C4 (skin changes), C5 (healed ulcer), or C6 (active ulcer). All incompetent saphenous trunks were treated simultaneously (63% of limbs). At 3-month follow-up, occlusion was achieved in 78% of the perforating veins. Five (15%) patients had active ulcers at baseline; 4 of the 5 ulcers had healed by 6 weeks after endovenous laser ablation. Evidence on the treatment of
perforator veins with ultrasound-guided sclerotherapy is limited, and there is a risk of deep venous occlusion.

Section Summary: Perforator Reflux
The literature has shown that the routine ligation and ablation of incompetent perforator veins is not necessary for treating varicose veins and venous insufficiency concurrent with superficial vein procedures. However, when combined superficial vein procedures and compression therapy have failed to improve symptoms (ie, ulcers), treatment of perforator vein reflux may be as beneficial as any alternative (eg, deep vein valve replacement). Comparative studies are needed to determine the most effective method of ligating and ablating incompetent perforator veins. Subfascial endoscopic perforator surgery has been shown to be as effective as the Linton procedure with a reduction in adverse events. Although only 1 case series has been identified showing an improvement in health outcomes, endovenous ablation with specialized laser or RFA probes has been shown to effectively ablate incompetent perforator veins with a potential decrease in morbidity compared with surgical interventions.

Summary of Evidence
For individuals who have varicose veins/venous insufficiency and saphenous vein reflux who receive endovenous thermal ablation (radiofrequency or laser), the evidence includes RCTs and systematic reviews of controlled trials. Relevant outcomes are symptoms, change in disease status, morbid events, quality of life, and treatment-related morbidity. There are a number of large RCTs and systematic reviews of RCTs assessing endovenous thermal ablation of the saphenous veins. Comparison with the standard of ligation and stripping at 2- to 5-year follow-up has supported the use of both endovenous laser ablation and radiofrequency ablation (RFA). Evidence has suggested that ligation and stripping lead to more neovascularization, while thermal ablation leads to more recanalization, resulting in similar clinical outcomes for endovenous thermal ablation and surgery. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

For individuals who have varicose veins/venous insufficiency and saphenous vein reflux who receive microfoam sclerotherapy, the evidence includes RCTs. Relevant outcomes are symptoms, change in disease status, morbid events, quality of life, and treatment-related morbidity. For physician-compounded sclerotherapy, there is high variability in success rates and some reports of serious adverse events. By comparison, rates of occlusion with the microfoam sclerotherapy (polidocanol 1%) approved by the Food and Drug Administration are similar to those reported for endovenous laser ablation or stripping. Results of a noninferiority trial of physician-compounded sclerotherapy have indicated that, once occluded, recurrence rates at 2 years are similar to those of ligation and stripping. Together, this evidence indicates that the more consistent occlusion with the microfoam sclerotherapy preparation will lead to recurrence rates similar to ligation and stripping in the longer term. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.
For individuals who have varicose veins/venous insufficiency and saphenous vein reflux who receive mechanochemical ablation, the evidence includes 2 RCTs and case series. Relevant outcomes are symptoms, change in disease status, morbid events, quality of life, and treatment-related morbidity. Mechanochemical ablation is a combination of liquid sclerotherapy with mechanical abrasion. Potential advantages of this procedure compared with thermal ablation are that mechanochemical ablation does not require multiple needle sticks with tumescent anesthesia and may result in less pain during the procedure. One RCT with high loss to follow-up has been published, and a larger RCT is comparing mechanochemical ablation with RFA has reported early results. These short-term results have suggested that intraprocedural pain is lower with mechanochemical ablation than with RFA. However, liquid sclerotherapy is not as effective as thermal ablation techniques for saphenous veins, and mechanochemical ablation has been assessed in relatively few patients and for short durations. Longer follow-up in larger RCTs is needed to evaluate its efficacy and durability compared with established procedures. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals who have varicose veins/venous insufficiency and saphenous vein reflux who receive cyanoacrylate adhesive, the evidence includes an RCT and case series. Relevant outcomes are symptoms, change in disease status, morbid events, quality of life, and treatment-related morbidity. The short-term efficacy of cyanoacrylate adhesion has been shown to be noninferior to RFA at 3 months in a multicenter noninferiority trial. Longer follow-up in a larger number of patients is needed to determine the durability of this treatment. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals who have varicose veins/venous insufficiency and saphenous vein reflux who receive cryoablation, the evidence includes RCTs and multicenter series. Relevant outcomes are symptoms, change in disease status, morbid events, quality of life, and treatment-related morbidity. Results from a recent RCT of cryoablation have indicated that this therapy is inferior to conventional stripping. Studies showing a benefit on health outcomes are needed. The evidence is insufficient to determine the effects of the technology on health outcomes.

Varicose Tributary Veins
For individuals who have varicose tributary veins who receive ablation (stab avulsion, sclerotherapy, or phlebectomy) of tributary veins, the evidence includes RCTs and systematic reviews of RCTs. Relevant outcomes are symptoms, change in disease status, morbid events, quality of life, and treatment-related morbidity. The literature has shown that sclerotherapy is effective for treating tributary veins following occlusion of the saphenofemoral or saphenopopliteal junction and saphenous veins. No studies have been identified comparing RFA or laser ablation of tributary veins with standard procedures (microphlebectomy and/or sclerotherapy). Transilluminated powered phlebectomy is effective at removing varicosities; outcomes are comparable to available alternatives such as stab avulsion and hook phlebectomy. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.
Perforator Veins

For individuals who have perforator vein reflux who receive ablation (e.g., subfascial endoscopic perforator surgery) of perforator veins, the evidence includes RCTs and systematic reviews of RCTs. Relevant outcomes are symptoms, change in disease status, morbid events, quality of life, and treatment-related morbidity. The literature has indicated that the routine ligation or ablation of incompetent perforator veins is not necessary for the treatment of varicose veins/venous insufficiency at the time of superficial vein procedures. However, when combined superficial vein procedures and compression therapy have failed to improve symptoms (i.e., ulcers), treatment of perforator vein reflux may be as beneficial as any alternative (e.g., deep vein valve replacement). Comparative studies are needed to determine the most effective method of ligating or ablating incompetent perforator veins. Subfascial endoscopic perforator surgery has been shown to be as effective as the Linton procedure with a reduction in adverse events. Although only 1 case series has been identified showing an improvement in health outcomes, endovenous ablation with specialized laser or radiofrequency probes has been shown to effectively ablate incompetent perforator veins with a potential decrease in morbidity compared with surgical interventions. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

References

Treatment of Varicose Veins/Venous Insufficiency

Policy # 00034
Original Effective Date: 08/26/2002
Current Effective Date: 01/23/2019

20. Todd KL, 3rd, Wright D, for the V-IG. The VANISH 2 study: a randomized, blinded, multicenter study to evaluate the efficacy and safety of polidocanol endovenous microfoam 0.5% and 1.0% compared with placebo for the treatment of saphenofemoral junction incompetence. Phlebology. Oct 2014;29(4):608-618. PMID 23864355
Treatment of Varicose Veins/Venous Insufficiency

Policy # 00034
Original Effective Date: 08/26/2002
Current Effective Date: 01/23/2019

©2019 Blue Cross and Blue Shield of Louisiana

Blue Cross and Blue Shield of Louisiana is an independent licensee of the Blue Cross and Blue Shield Association and incorporated as Louisiana Health Service & Indemnity Company.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without permission from Blue Cross and Blue Shield of Louisiana.

68. Lam YL, Toonder IM, Wittens CH. Clarivein(R) mechano-chemical ablation an interim analysis of a randomized controlled trial dose-finding study. Phlebology. Apr 2016;31(3):170-176. PMID 26249150

Policy History

Original Effective Date: 08/26/2002
Current Effective Date: 01/23/2019

08/15/2002 Medical Policy Committee review
08/26/2002 Managed Care Advisory Council approval
10/05/2004 Medical Director review
11/29/2004 Managed Care Advisory Council approval
10/05/2005 Medical Director review

©2019 Blue Cross and Blue Shield of Louisiana

Blue Cross and Blue Shield of Louisiana is an independent licensee of the Blue Cross and Blue Shield Association and incorporated as Louisiana Health Service & Indemnity Company.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without permission from Blue Cross and Blue Shield of Louisiana.
Treatment of Varicose Veins/Venous Insufficiency

Policy # 00034
Original Effective Date: 08/26/2002
Current Effective Date: 01/23/2019

10/18/2005 Medical Policy Committee review. Format revision. No substance change to policy.
10/27/2005 Quality Care Advisory Council approval
07/07/2006 Format revision including addition of FDA and or other governmental regulatory approval and rationale/source. Coverage eligibility unchanged.
11/01/2006 Medical Director review
11/15/2006 Medical Policy Committee approval. Patient selection criteria changed to include all saphenous varicose veins as eligible for coverage with criteria.
06/13/2007 Medical Director review
06/20/2007 Medical Policy Committee approval. Policy revised to include small saphenous and great saphenous vein greater than 12mm. Rationale/Source updated.
06/04/2008 Medical Director review
06/18/2008 Medical Policy Committee approval. No change to coverage eligibility.
06/04/2009 Medical Director review
06/17/2009 Medical Policy Committee approval. No change to coverage eligibility.
06/03/2010 Medical Policy Committee review
06/16/2010 Medical Policy Implementation Committee approval. Coverage eligibility unchanged.
06/02/2011 Medical Policy Committee review
06/14/2012 Medical Policy Committee review
06/20/2012 Medical Policy Implementation Committee approval. Policy extensively rewritten. Title changed. Added “echosclerotherapy, also known as deep ultrasound-guided sclerotherapy (DUGS), usually with a catheter infusion of a foam sclerosant, and other protocols for sclerotherapy, including the COMPASS protocol” to list of investigational indications.
06/04/2013 The “not medically necessary” statement for treatment of greater or lesser saphenous veins clarified by removal of the term “cosmetic”.
06/06/2013 Medical Policy Committee review
06/25/2013 Medical Policy Implementation Committee approval. Mechanochemical ablation of any vein added as investigational. “The Company considers treatment of telangiectasia such as spider veins, angiomata, and hemangiomata cosmetic and is not a covered benefit” was changed from not medically necessary.
06/05/2014 Medical Policy Committee review
06/18/2014 Medical Policy Implementation Committee approval. No change to coverage.
03/05/2015 Medical Policy Committee review
03/20/2015 Medical Policy Implementation Committee approval. Microfoam sclerotherapy considered medically necessary. Added “or microfoam sclerotherapy” to the not medically necessary policy statement under accessory saphenous veins.
08/03/2015 Coding update: ICD10 Diagnosis code section added; ICD9 Procedure code section removed.
01/07/2016 Medical Policy Committee review
01/22/2016 Medical Policy Implementation Committee approval. The requirement of failure of compression therapy was removed from the policy statements on ulceration secondary to venous stasis and recurrent superficial thrombophlebitis; terminology was changed from greater and lesser to great and small saphenous veins. Cyanoacrylate adhesive of any vein added to INV statement. CEAP clinical classification info added.

©2019 Blue Cross and Blue Shield of Louisiana

Blue Cross and Blue Shield of Louisiana is an independent licensee of the Blue Cross and Blue Shield Association and incorporated as Louisiana Health Service & Indemnity Company.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without permission from Blue Cross and Blue Shield of Louisiana.
TREATMENT OF VARICOSE VEINS/VENOUS INSUFFICIENCY

POLICY # 00034

ORIGINAL EFFECTIVE DATE: 08/26/2002
CURRENT EFFECTIVE DATE: 01/23/2019

01/01/2017 Coding update: Removal of ICD-9 Diagnosis Codes and CPT coding update
01/05/2017 Medical Policy Committee review
01/18/2017 Medical Policy Implementation Committee approval. Added coverage for ultrasound-guided microfoam sclerotherapy.
01/04/2018 Medical Policy Committee review
01/17/2018 Medical Policy Implementation Committee approval. Sclerotherapy of perforator veins when criteria are not met added as investigational.
01/10/2019 Medical Policy Committee review
01/23/2019 Medical Policy Implementation Committee approval. No change to coverage.

NEXT SCHEDULED REVIEW DATE: 01/2020

CODING

The five character codes included in the Blue Cross Blue Shield of Louisiana Medical Policy Coverage Guidelines are obtained from Current Procedural Terminology (CPT®), copyright 2018 by the American Medical Association (AMA). CPT is developed by the AMA as a listing of descriptive terms and five character identifying codes and modifiers for reporting medical services and procedures performed by physician.

The responsibility for the content of Blue Cross Blue Shield of Louisiana Medical Policy Coverage Guidelines is with Blue Cross and Blue Shield of Louisiana and no endorsement by the AMA is intended or should be implied. The AMA disclaims responsibility for any consequences or liability attributable or related to any use, nonuse or interpretation of information contained in Blue Cross Blue Shield of Louisiana Medical Policy Coverage Guidelines. Fee schedules, relative value units, conversion factors and/or related components are not assigned by the AMA, are not part of CPT, and the AMA is not recommending their use. The AMA does not directly or indirectly practice medicine or dispense medical services. The AMA assumes no liability for data contained or not contained herein. Any use of CPT outside of Blue Cross Blue Shield of Louisiana Medical Policy Coverage Guidelines should refer to the most current Current Procedural Terminology which contains the complete and most current listing of CPT codes and descriptive terms. Applicable FARS/DFARS apply.

CPT is a registered trademark of the American Medical Association.

Codes used to identify services associated with this policy may include (but may not be limited to) the following:

<table>
<thead>
<tr>
<th>Code Type</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPT</td>
<td>36465, 36466, 36468, 36470, 36471, 36473, 36474, 36475, 36476, 36478, 36479, 36482, 36483, 37500, 37700, 37718, 37722, 37735, 37760, 37761, 37765, 37766, 37780, 37785, 37799, 49185</td>
</tr>
<tr>
<td>HCPCS</td>
<td>S2202</td>
</tr>
<tr>
<td>ICD-10 Diagnosis</td>
<td>I83.001-I83.029, I83.10-I83.12, I83.201-I83.229, I83.811-I83.819, I83.891-I83.899, I83.90-I83.93, I83.2</td>
</tr>
</tbody>
</table>

*Investigational – A medical treatment, procedure, drug, device, or biological product is Investigational if the effectiveness has not been clearly tested and it has not been incorporated into standard medical practice. Any determination we make that a medical treatment, procedure, drug, device, or biological product is Investigational will be based on a consideration of the following:

©2019 Blue Cross and Blue Shield of Louisiana

Blue Cross and Blue Shield of Louisiana is an independent licensee of the Blue Cross and Blue Shield Association and incorporated as Louisiana Health Service & Indemnity Company.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without permission from Blue Cross and Blue Shield of Louisiana.
Treatment of Varicose Veins/Venous Insufficiency

Policy # 00034
Original Effective Date: 08/26/2002
Current Effective Date: 01/23/2019

A. Whether the medical treatment, procedure, drug, device, or biological product can be lawfully marketed without approval of the U.S. FDA and whether such approval has been granted at the time the medical treatment, procedure, drug, device, or biological product is sought to be furnished; or

B. Whether the medical treatment, procedure, drug, device, or biological product requires further studies or clinical trials to determine its maximum tolerated dose, toxicity, safety, effectiveness, or effectiveness as compared with the standard means of treatment or diagnosis, must improve health outcomes, according to the consensus of opinion among experts as shown by reliable evidence, including:

1. Consultation with the Blue Cross and Blue Shield Association technology assessment program (TEC) or other nonaffiliated technology evaluation center(s);
2. Credible scientific evidence published in peer-reviewed medical literature generally recognized by the relevant medical community; or
3. Reference to federal regulations.

**Medically Necessary (or “Medical Necessity”) - Health care services, treatment, procedures, equipment, drugs, devices, items or supplies that a Provider, exercising prudent clinical judgment, would provide to a patient for the purpose of preventing, evaluating, diagnosing or treating an illness, injury, disease or its symptoms, and that are:

A. In accordance with nationally accepted standards of medical practice;
B. Clinically appropriate, in terms of type, frequency, extent, level of care, site and duration, and considered effective for the patient's illness, injury or disease; and
C. Not primarily for the personal comfort or convenience of the patient, physician or other health care provider, and not more costly than an alternative service or sequence of services at least as likely to produce equivalent therapeutic or diagnostic results as to the diagnosis or treatment of that patient's illness, injury or disease.

For these purposes, “nationally accepted standards of medical practice” means standards that are based on credible scientific evidence published in peer-reviewed medical literature generally recognized by the relevant medical community, Physician Specialty Society recommendations and the views of Physicians practicing in relevant clinical areas and any other relevant factors.

‡ Indicated trademarks are the registered trademarks of their respective owners.

NOTICE: Medical Policies are scientific based opinions, provided solely for coverage and informational purposes. Medical Policies should not be construed to suggest that the Company recommends, advocates, requires, encourages, or discourages any particular treatment, procedure, or service, or any particular course of treatment, procedure, or service.