Cardiac Hemodynamic Monitoring for the Management of Heart Failure in the Outpatient Setting

Policy # 00287
Original Effective Date: 01/31/2005
Current Effective Date: 08/10/2020

Applies to all products administered or underwritten by Blue Cross and Blue Shield of Louisiana and its subsidiary, HMO Louisiana, Inc. (collectively referred to as the “Company”), unless otherwise provided in the applicable contract. Medical technology is constantly evolving, and we reserve the right to review and update Medical Policy periodically.

Note: Biventricular Pacemakers (Cardiac Resynchronization Therapy) for the Treatment of Heart Failure is addressed separately in medical policy 00009.

Services Are Considered Investigational
Coverage is not available for investigational medical treatments or procedures, drugs, devices or biological products.

Based on review of available data, the Company considers cardiac hemodynamic monitoring for the management of heart failure utilizing thoracic bioimpedance, inert gas rebreathing, arterial pressure during the Valsalva maneuver, and implantable direct pressure monitoring of the pulmonary artery (PA) in the ambulatory care and outpatient setting to be investigational.*

Policy Guidelines
This policy refers only to the use of stand-alone cardiac output measurement devices designed for use in ambulatory care and outpatient settings. The use of cardiac hemodynamic monitors or intrathoracic fluid monitors that are integrated into other implantable cardiac devices, including implantable cardioverter defibrillators, cardiac resynchronization therapy devices, and cardiac pacing devices, is addressed in medical policy 00009.

Background/Overview
Chronic Heart Failure
Patients with chronic heart failure are at risk of developing acute decompensated heart failure, often requiring hospital admission. Patients with a history of acute decompensation have the additional risk of future episodes of decompen-sation and death. Reasons for the transition from a stable, chronic state to an acute, decompensated state include disease progression, as well as acute events such as
coronary ischemia and dysrhythmias. While precipitating factors are frequently not identified, the most common preventable cause is noncompliance with medication and dietary regimens.

Management

Strategies for reducing decompensation, and thus the need for hospitalization, are aimed at early identification of patients at risk for imminent decompensation. Programs for early identification of heart failure are characterized by frequent contact with patients to review signs and symptoms with a health care provider, education, and medication adjustments as appropriate. These encounters may occur face-to-face in the office or at home, or via cellular or computed technology.

Precise measurement of cardiac hemodynamics is often employed in the intensive care setting to carefully manage fluid status in acutely decompensated heart failure. Transthoracic echocardiography, transesophageal echocardiography, and Doppler ultrasound are noninvasive methods for monitoring cardiac output on an intermittent basis for the more stable patient but are not addressed herein. A variety of biomarkers and radiologic techniques may be used for dyspnea when the diagnosis of acute decompensated heart failure is uncertain.

The criterion standard for hemodynamic monitoring is pulmonary artery catheters and central venous pressure catheters. However, they are invasive, inaccurate, and inconsistent in predicting fluid responsiveness. Several studies have demonstrated that catheters fail to improve outcomes in critically ill patients and may be associated with harm. To overcome these limitations, multiple techniques and devices have been developed that use complex imaging technology and computer algorithms to estimate fluid responsiveness, volume status, cardiac output and tissue perfusion. Many are intended for use in outpatient settings but can be used in the emergency department, intensive care unit, and operating room. Four methods are reviewed here: implantable pressure monitoring devices, thoracic bioimpedance, inert gas rebreathing, and arterial waveform during the Valsalva maneuver. Use of the last 3 is not widespread because of several limitations including use of proprietary technology making it difficult to confirm their validity and lack of large randomized controlled trials to evaluate treatment decisions guided by these hemodynamic monitors.
FDA or Other Governmental Regulatory Approval

U.S. Food and Drug Administration (FDA)

Noninvasive Left Ventricular End-Diastolic Pressure Measurement Devices

In 2004, the VeriCor® (CVP Diagnostics), a noninvasive left ventricular end-diastolic pressure measurement device, was cleared for marketing by U.S. Food and Drug Administration (FDA) through the 510(k) process. The FDA determined that this device was substantially equivalent to existing devices for the following indication:

"The VeriCor is indicated for use in estimating non-invasively, left ventricular end-diastolic pressure (LVEDP). This estimate, when used along with clinical signs and symptoms and other patient test results, including weights on a daily basis, can aid the clinician in the selection of further diagnostic tests in the process of reaching a diagnosis and formulating a therapeutic plan when abnormalities of intravascular volume are suspected. The device has been clinically validated in males only. Use of the device in females has not been investigated."

FDA product code: DXN.

Thoracic Bioimpedance Devices

Multiple thoracic impedance measurement devices that do not require invasive placement have been cleared for marketing by the FDA through the 510(k) process. The FDA determined that this device was substantially equivalent to existing devices used for peripheral blood flow monitoring. Table 1 presents an inexhaustive list of representative devices (FDA product code: DSB).

Table 1. Noninvasive Thoracic Impedance Plethysmography Devices

<table>
<thead>
<tr>
<th>Device</th>
<th>Manufacturer</th>
<th>Clearance Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>BioZ®† Thoracic Impedance Plethysmograph</td>
<td>SonoSite</td>
<td>2009</td>
</tr>
<tr>
<td>Zoe®† Fluid Status Monitor</td>
<td>Noninvasive Medical Technologies</td>
<td>2004</td>
</tr>
<tr>
<td>Cheetah Starling SV</td>
<td>Cheetah Medical</td>
<td>2008</td>
</tr>
</tbody>
</table>
Cardiac Hemodynamic Monitoring for the Management of Heart Failure in the Outpatient Setting

Policy # 00287
Original Effective Date: 01/31/2005
Current Effective Date: 08/10/2020

<table>
<thead>
<tr>
<th>Device</th>
<th>Manufacturer</th>
<th>Clearance Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>PhysioFlow®‡ Signal Morphology-based Impedance Cardiography (SM-ICG™)</td>
<td>Vasocom, now NeuMeDx</td>
<td>2008</td>
</tr>
<tr>
<td>ReDSTM Wearable System</td>
<td>Sensible Medical Innovations</td>
<td>2015</td>
</tr>
</tbody>
</table>

Also, several manufacturers market thoracic impedance measurement devices integrated into implantable cardiac pacemakers, cardioverter defibrillator devices, and cardiac resynchronization therapy devices. Thoracic bioimpedance devices integrated into implantable cardiac devices are addressed in medical policy 00009.

Inert Gas Rebreathing Devices
In 2006, the Innocor®‡ (Innovision), an inert gas rebreathing device, was cleared for marketing by the FDA through the 510(k) process. The FDA determined that this device was substantially equivalent to existing inert gas rebreathing devices for use in computing blood flow. FDA product code: BZG.

Implantable Pulmonary Artery Pressure Sensor Devices
In 2014, the CardioMEMS™‡ Champion Heart Failure Monitoring System (CardioMEMS, now Abbott) was approved for marketing by the FDA through the premarket approval process. This device consists of an implantable pulmonary artery (PA) sensor, which is implanted in the distal PA, a transvenous delivery system, and an electronic sensor that processes signals from the implantable PA sensor and transmits PA pressure measurements to a secure database. The device originally underwent FDA review in 2011, at which point FDA found no reasonable assurance that the monitoring system would be effective, particularly in certain subpopulations, although the FDA agreed this monitoring system was safe for use in the indicated patient population.

Several other devices that monitor cardiac output by measuring pressure changes in the PA or right ventricular outflow tract have been investigated in the research setting but have not received the FDA approval. They include the Chronicle®‡ implantable continuous hemodynamic monitoring
Rationale/Source
A variety of outpatient cardiac hemodynamic monitoring devices are intended to improve quality of life and reduce morbidity for patients with heart failure by decreasing episodes of acute decompensation. Monitors can identify physiologic changes that precede clinical symptoms and thus allow preventive intervention. These devices operate through various mechanisms, including implantable pressure sensors, thoracic bioimpedance measurement, inert gas rebreathing, and estimation of left ventricular end-diastolic pressure by arterial pressure during the Valsalva maneuver.

For individuals who have heart failure in outpatient settings who receive hemodynamic monitoring with an implantable pulmonary artery pressure sensor device, the evidence includes randomized controlled trials. Relevant outcomes are overall survival, symptoms, functional outcomes, quality of life, morbid events, hospitalizations, and treatment-related morbidity. One implantable pressure monitor, the CardioMEMS device, has U.S. Food and Drug Administration approval. The pivotal CardioMEMS Heart Sensor Allows Monitoring of Pressure to Improve Outcomes in NYHA III Heart Failure Patients randomized controlled trial reported a statistically significant decrease in heart failure-related hospitalizations in patients implanted with CardioMEMS device compared with usual care. However, trial results were potentially biased in favor of the treatment group due to use of additional nurse communication to enhance protocol compliance with the device. The manufacturer conducted multiple analyses to address potential bias from the nurse interventions. Results were reviewed favorably by the Food and Drug Administration. While these analyses demonstrated the consistency of benefit from the CardioMEMS device, all such analyses have methodologic limitations. Early safety data have been suggestive of a higher rate of procedural complications, particularly related to pulmonary artery injury. Given that the intervention is invasive and intended to be used for a highly prevalent condition, in the light of limited safety data, lack of demonstrable mortality benefit, and pending questions related to its benefit in reducing hospitalizations, the net benefit remains uncertain. Many of these concerns may be clarified by an ongoing postmarketing
Cardiac Hemodynamic Monitoring for the Management of Heart Failure in the Outpatient Setting

Policy # 00287
Original Effective Date: 01/31/2005
Current Effective Date: 08/10/2020

study that proposes to enroll 1200 patients (at least 35% women) is reported. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals who have heart failure in outpatient settings who receive hemodynamic monitoring by thoracic bioimpedance, the evidence includes uncontrolled prospective studies and case series. Relevant outcomes are overall survival, symptoms, functional outcomes, quality of life, morbid events, hospitalizations, and treatment-related morbidity. There is a lack of randomized controlled trial evidence evaluating whether the use of these technologies improves health outcomes over standard active management of heart failure patients. The case series have reported physiologic measurement-related outcomes and/or associations between monitoring information and heart failure exacerbations, but do not provide definitive evidence on device efficacy. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals who have heart failure in outpatient settings who receive hemodynamic monitoring with inert gas rebreathing, no studies have been identified on clinical validity or clinical utility. Relevant outcomes are overall survival, symptoms, functional outcomes, quality of life, morbid events, hospitalizations, and treatment-related morbidity. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals who have heart failure in outpatient settings who receive hemodynamic monitoring of arterial pressure during the Valsalva maneuver, a single study was identified. Relevant outcomes are overall survival, symptoms, functional outcomes, quality of life, morbid events, hospitalizations, and treatment-related morbidity. The study assessed the use of LVEDP monitoring and reported an 85% sensitivity and an 80% specificity to detect LVEDP greater than 15 mm Hg. The evidence is insufficient to determine the effects of the technology on health outcomes.

Supplemental Information

Practice Guidelines and Position Statements

American College of Cardiology et al

In 2017, the American College of Cardiology, the American Heart Association, and the Heart Failure Society of America issued joint guidelines on the management of heart failure that offered no recommendations for the use of ambulatory monitoring devices.
Cardiac Hemodynamic Monitoring for the Management of Heart Failure in the Outpatient Setting

Policy # 00287
Original Effective Date: 01/31/2005
Current Effective Date: 08/10/2020

European Society of Cardiology
The European Society of Cardiology guidelines on the diagnosis and treatment of acute and chronic heart failure stated the following: "Monitoring of pulmonary artery pressures using a wireless implantable hemodynamic monitoring system (CardioMEMS) may be considered in symptomatic patients with HF [heart failure] with previous HF hospitalization in order to reduce the risk of recurrent HF hospitalization" (class IIb, level B recommendation.)

National Institute for Health and Care Excellence
In 2018, the National Institute for Health and Care Excellence (NICE) updated their guidelines on chronic heart failure management and did not include outpatient hemodynamic monitoring as a recommendation.

In 2013, the Institute issued guidance on the insertion and use of implantable pulmonary artery pressure monitors in chronic heart failure. The recommendations concluded that "Current evidence on the safety and efficacy of the insertion and use of implantable pulmonary artery pressure monitors in chronic heart failure is limited in both quality and quantity."

Heart Failure Society of America
In 2018, the Heart Failure Society of America Scientific Statements Committee (2018) published a white paper consensus statement on remote monitoring of patients with heart failure.

The committee concluded that: "Based on available evidence, routine use of external RPM devices is not recommended. Implanted devices that monitor pulmonary arterial pressure and/or other parameters may be beneficial in selected patients or when used in structured programs, but the value of these devices in routine care requires further study."

U.S. Preventive Services Task Force Recommendations
Not applicable.

Medicare National Coverage
In 2014, the Centers for Medicare & Medicaid Services updated its 2006 decision memorandum on thoracic electrical bioimpedance. Medicare's national coverage determination found thoracic bioimpedance to be reasonable and necessary for the following indications:

- Differentiation of cardiogenic from pulmonary causes of acute dyspnea;
Cardiac Hemodynamic Monitoring for the Management of Heart Failure in the Outpatient Setting

Policy # 00287
Original Effective Date: 01/31/2005
Current Effective Date: 08/10/2020

- Optimization of atrioventricular interval for patients with atrioventricular sequential cardiac pacemakers;
- Monitoring of continuous inotropic therapy for patients with terminal heart failure;
- Evaluation for rejection in patients with a heart transplant as a predetermined alternative to myocardial biopsy; and

While Medicare permits coverage of thoracic bioimpedance in these conditions, it has acknowledged that there is a "...general absence of studies evaluating the impact of using thoracic bioimpedance for managing patients with cardiac disease...." Medicare does not cover the use of thoracic bioimpedance in the management of hypertension due to inadequate evidence.

Medicare has also specified that thoracic bioimpedance is not covered for "the management of all forms of hypertension (with the exception of drug-resistant hypertension…)." Further, Medicare specified that:

"[Contractors] have discretion to determine whether the use of TEB [thoracic bioimpedance] for the management of drug-resistant hypertension is reasonable and necessary. Drug resistant hypertension is defined as failure to achieve goal blood pressure in patients who are adhering to full doses of an appropriate 3-drug regimen that includes a diuretic."

There is no Medicare national coverage determination on implantable direct pressure monitoring, inert gas rebreathing, and arterial pressure with Valsalva.

Effective April 7, 2016, Novitas Solutions issued a noncoverage local coverage determination (ID L36419) for outpatient wireless pulmonary artery pressure monitoring for heart failure (CardioMEMS).

Ongoing and Unpublished Clinical Trials
Some currently unpublished trials that might influence this review are listed in Table 2.
Cardiac Hemodynamic Monitoring for the Management of Heart Failure in the Outpatient Setting

Policy # 00287
Original Effective Date: 01/31/2005
Current Effective Date: 08/10/2020

Table 2. Summary of Key Trials

<table>
<thead>
<tr>
<th>NCT No.</th>
<th>Trial Name</th>
<th>Planned Enrollment</th>
<th>Completion Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ongoing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCT02950597</td>
<td>Evaluation of Clinical Impact of Non-Invasive Hemodynamic Monitoring to Optimize Preventive Care of Heart Failure Patients</td>
<td>197</td>
<td>Nov 2019</td>
</tr>
<tr>
<td>NCT02693691</td>
<td>CardioMEMS European Monitoring Study for Heart Failure</td>
<td>239</td>
<td>Dec 2019</td>
</tr>
<tr>
<td>NCT02954341</td>
<td>CardioMEMS HF SystemOUS Post Market Study</td>
<td>800</td>
<td>Dec 2023</td>
</tr>
<tr>
<td>NCT03387813</td>
<td>Hemodynamic-GUIDEd Management of Heart Failure</td>
<td>3600</td>
<td>Apr 2023</td>
</tr>
<tr>
<td>Unpublished</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCT01121107</td>
<td>Left Atrial Pressure Monitoring to Optimize Heart Failure Therapy Study</td>
<td>486</td>
<td>Apr 2015 (updated 02/04/2019)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dec 2012 (unknown updated 06/03/09)</td>
</tr>
</tbody>
</table>

NCT: national clinical trial.

References

Cardiac Hemodynamic Monitoring for the Management of Heart Failure in the Outpatient Setting

Policy # 00287
Original Effective Date: 01/31/2005
Current Effective Date: 08/10/2020

MedicalDevices/MedicalDevicesAdvisoryCommittee/CirculatorySystemDevicesPanel/UCM370951.pdf.

Cardiac Hemodynamic Monitoring for the Management of Heart Failure in the Outpatient Setting

Policy # 00287
Original Effective Date: 01/31/2005
Current Effective Date: 08/10/2020

©2020 Blue Cross and Blue Shield of Louisiana

Blue Cross and Blue Shield of Louisiana is an independent licensee of the Blue Cross and Blue Shield Association and incorporated as Louisiana Health Service & Indemnity Company.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without permission from Blue Cross and Blue Shield of Louisiana.
Cardiac Hemodynamic Monitoring for the Management of Heart Failure in the Outpatient Setting

Policy # 00287
Original Effective Date: 01/31/2005
Current Effective Date: 08/10/2020

Policy History
Original Effective Date: 01/31/2005
Current Effective Date: 08/10/2020
12/07/2004 Medical Director review
12/14/2004 Medical Policy Committee review
01/31/2005 Managed Care Advisory Council approval
07/07/2006 Format revision, including addition of FDA and or other governmental regulatory approval and rationale/source. Coverage eligibility unchanged
02/07/2007 Medical Director review
02/04/2009 Medical Director review
02/19/2009 Medical Policy Committee approval. No change to coverage eligibility.
02/04/2010 Medical Policy Committee approval
02/17/2010 Medical Policy Implementation Committee approval. Coverage eligibility unchanged.
03/03/2011 Medical Policy Committee review
03/16/2011 Medical Policy Implementation Committee approval. This policy replaces medical policies 00116 and 00151 to create a single policy addressing cardiac hemodynamic monitoring for the management of heart failure in the outpatient setting.
03/01/2012 Medical Policy Committee review
03/21/2012 Medical Policy Implementation Committee approval. Coverage eligibility unchanged.
05/16/2012 Policy Retired
06/02/2016 Medical Policy Committee review
06/20/2016 Medical Policy Implementation Committee approval. Policy returned to active status.
01/01/2017 Coding update: Removing ICD-9 Diagnosis Codes
06/01/2017 Medical Policy Committee review
06/21/2017 Medical Policy Implementation Committee approval. Coverage eligibility unchanged.
07/05/2018 Medical Policy Committee review
Cardiac Hemodynamic Monitoring for the Management of Heart Failure in the Outpatient Setting

Policy # 00287
Original Effective Date: 01/31/2005
Current Effective Date: 08/10/2020

07/11/2018 Medical Policy Implementation Committee approval. Changed “arterial pressure/Valsalva” to “arterial pressure during the Valsalva maneuver”. Coverage eligibility unchanged.
01/01/2019 Coding update
07/03/2019 Medical Policy Committee review
07/18/2019 Medical Policy Implementation Committee approval. Coverage eligibility unchanged.
12/10/2019 Coding update
06/10/2020 Coding update
07/02/2020 Medical Policy Committee review
07/08/2020 Medical Policy Implementation Committee approval. Coverage eligibility unchanged.

Next Scheduled Review Date: 07/2021

Coding
The five character codes included in the Blue Cross Blue Shield of Louisiana Medical Policy Coverage Guidelines are obtained from Current Procedural Terminology (CPT®), copyright 2019 by the American Medical Association (AMA). CPT is developed by the AMA as a listing of descriptive terms and five character identifying codes and modifiers for reporting medical services and procedures performed by physician.
The responsibility for the content of Blue Cross Blue Shield of Louisiana Medical Policy Coverage Guidelines is with Blue Cross and Blue Shield of Louisiana and no endorsement by the AMA is intended or should be implied. The AMA disclaims responsibility for any consequences or liability attributable or related to any use, nonuse or interpretation of information contained in Blue Cross Blue Shield of Louisiana Medical Policy Coverage Guidelines. Fee schedules, relative value units, conversion factors and/or related components are not assigned by the AMA, are not part of CPT, and the AMA is not recommending their use. The AMA does not directly or indirectly practice medicine or dispense medical services. The AMA assumes no liability for data contained or not contained herein. Any use of CPT outside of Blue Cross Blue Shield of Louisiana Medical Policy Coverage Guidelines should refer to the most current Current Procedural Terminology which contains the complete and most current listing of CPT codes and descriptive terms. Applicable FARS/DFARS apply.

©2020 Blue Cross and Blue Shield of Louisiana
Blue Cross and Blue Shield of Louisiana is an independent licensee of the Blue Cross and Blue Shield Association and incorporated as Louisiana Health Service & Indemnity Company.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without permission from Blue Cross and Blue Shield of Louisiana.
Cardiac Hemodynamic Monitoring for the Management of Heart Failure in the Outpatient Setting

Policy # 00287
Original Effective Date: 01/31/2005
Current Effective Date: 08/10/2020

CPT is a registered trademark of the American Medical Association.

Codes used to identify services associated with this policy may include (but may not be limited to) the following:

<table>
<thead>
<tr>
<th>Code Type</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPT</td>
<td>33289, 93264, 93701, 93799</td>
</tr>
<tr>
<td></td>
<td>Added codes eff 7/1/2020: 0607T, 0608T</td>
</tr>
<tr>
<td>HCPCS</td>
<td>No codes</td>
</tr>
<tr>
<td></td>
<td>Codes added eff 1/1/20: I48.11-I48.21</td>
</tr>
</tbody>
</table>

*Investigational – A medical treatment, procedure, drug, device, or biological product is Investigational if the effectiveness has not been clearly tested and it has not been incorporated into standard medical practice. Any determination we make that a medical treatment, procedure, drug, device, or biological product is Investigational will be based on a consideration of the following:

A. Whether the medical treatment, procedure, drug, device, or biological product can be lawfully marketed without approval of the U.S. Food and Drug Administration (FDA) and whether such approval has been granted at the time the medical treatment, procedure, drug, device, or biological product is sought to be furnished; or

B. Whether the medical treatment, procedure, drug, device, or biological product requires further studies or clinical trials to determine its maximum tolerated dose, toxicity, safety, effectiveness, or effectiveness as compared with the standard means of treatment or diagnosis, must improve health outcomes, according to the consensus of opinion among experts as shown by reliable evidence, including:

©2020 Blue Cross and Blue Shield of Louisiana

Blue Cross and Blue Shield of Louisiana is an independent licensee of the Blue Cross and Blue Shield Association and incorporated as Louisiana Health Service & Indemnity Company.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without permission from Blue Cross and Blue Shield of Louisiana.
Cardiac Hemodynamic Monitoring for the Management of Heart Failure in the Outpatient Setting

Policy # 00287
Original Effective Date: 01/31/2005
Current Effective Date: 08/10/2020

1. Consultation with the Blue Cross and Blue Shield Association technology assessment program (TEC) or other nonaffiliated technology evaluation center(s);
2. Credible scientific evidence published in peer-reviewed medical literature generally recognized by the relevant medical community; or
3. Reference to federal regulations.

‡ Indicated trademarks are the registered trademarks of their respective owners.

NOTICE: If the Patient’s health insurance contract contains language that differs from the BCBSLA Medical Policy definition noted above, the definition in the health insurance contract will be relied upon for specific coverage determinations.

NOTICE: Medical Policies are scientific based opinions, provided solely for coverage and informational purposes. Medical Policies should not be construed to suggest that the Company recommends, advocates, requires, encourages, or discourages any particular treatment, procedure, or service, or any particular course of treatment, procedure, or service.