Whole Exome and Whole Genome Sequencing for Diagnosis of Genetic Disorders

Policy # 00389
Original Effective Date: 11/20/2013
Current Effective Date: 12/11/2019

Applies to all products administered or underwritten by Blue Cross and Blue Shield of Louisiana and its subsidiary, HMO Louisiana, Inc. (collectively referred to as the “Company”), unless otherwise provided in the applicable contract. Medical technology is constantly evolving, and we reserve the right to review and update Medical Policy periodically.

Note: Genetic Testing for Developmental Delay/Intellectual Disability, Autism Spectrum Disorder, and Congenital Anomalies is addressed separately in medical policy 00536.

Note: Genetic Testing for the Diagnosis of Inherited Peripheral Neuropathies is addressed separately in medical policy 00378.

Note: Genetic Testing for Facioscapulohumeral Muscular Dystrophy is addressed separately in medical policy 00392.

Note: Genetic Testing for Epilepsy is addressed separately in medical policy 00401.

Note: Genetic Testing for Limb-Girdle Muscular Dystrophies is addressed separately in medical policy 00489.

When Services May Be Eligible for Coverage
Coverage for eligible medical treatments or procedures, drugs, devices or biological products may be provided only if:

- Benefits are available in the member’s contract/certificate, and
- Medical necessity criteria and guidelines are met.

Based on review of available data, the Company may consider whole exome sequencing (WES) for the evaluation of unexplained congenital or neurodevelopmental disorder in children to be eligible for coverage.**
Whole Exome and Whole Genome Sequencing for Diagnosis of Genetic Disorders

Policy # 00389
Original Effective Date: 11/20/2013
Current Effective Date: 12/11/2019

Patient Selection Criteria
Coverage eligibility will be met for whole exome sequencing (WES) for the evaluation of unexplained congenital or neurodevelopmental disorder in children when ALL of the following criteria are met:

- The patient has been evaluated by a clinician with expertise in clinical genetics and counseled about the potential risks of genetic testing; AND
- There is potential for a change in management and clinical outcome for the individual being tested; AND
- A genetic etiology is considered the most likely explanation for the phenotype despite previous genetic testing (e.g., chromosomal microarray analysis and/or targeted single-gene testing), OR when previous genetic testing has failed to yield a diagnosis and the affected individual is faced with invasive procedures or testing as the next diagnostic step (e.g., muscle biopsy).

When Services Are Considered Investigational
Coverage is not available for investigational medical treatments or procedures, drugs, devices or biological products.

Based on review of available data, the Company considers whole exome sequencing (WES) for the diagnosis of genetic disorders in all other situations to be investigational.*

Based on review of available data, the Company considers whole genome sequencing (WGS) for the diagnosis of genetic disorders to be investigational.*

Based on review of available data, the Company considers whole exome sequencing (WES) and whole genome sequencing (WGS) for screening for genetic disorders to be investigational.*

Policy Guidelines
The policy statements are intended to address the use of whole exome and whole genome sequencing for the diagnosis of genetic disorders in patients with suspected genetic disorders and for population-based screening.
Whole Exome and Whole Genome Sequencing for Diagnosis of Genetic Disorders

Policy # 00389
Original Effective Date: 11/20/2013
Current Effective Date: 12/11/2019

This policy does not address the use of whole exome and whole genome sequencing for preimplantation genetic diagnosis or screening, prenatal (fetal) testing, or testing of cancer cells.

Trio Testing
Testing of the child and both parents can increase the chance of finding a definitive diagnosis.

Genetics Nomenclature Update
The Human Genome Variation Society nomenclature is used to report information on variants found in DNA and serves as an international standard in DNA diagnostics. It is being implemented for genetic testing medical evidence review updates starting in 2017 (see Table PG1). The Society’s nomenclature is recommended by the Human Variome Project, the HUman Genome Organization, and by the Human Genome Variation Society itself.

The American College of Medical Genetics and Genomics and the Association for Molecular Pathology standards and guidelines for interpretation of sequence variants represent expert opinion from both organizations, in addition to the College of American Pathologists. These recommendations primarily apply to genetic tests used in clinical laboratories, including genotyping, single genes, panels, exomes, and genomes. Table PG2 shows the recommended standard terminology---“pathogenic,” “likely pathogenic,” “uncertain significance,” “likely benign,” and “benign”---to describe variants identified that cause Mendelian disorders.

Table PG1. Nomenclature to Report on Variants Found in DNA

<table>
<thead>
<tr>
<th>Previous</th>
<th>Updated</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mutation</td>
<td>Disease-associated variant</td>
<td>Disease-associated change in the DNA sequence</td>
</tr>
<tr>
<td>Variant</td>
<td>Change in the DNA sequence</td>
<td></td>
</tr>
</tbody>
</table>
Whole Exome and Whole Genome Sequencing for Diagnosis of Genetic Disorders

Policy # 00389
Original Effective Date: 11/20/2013
Current Effective Date: 12/11/2019

| Familial variant | Disease-associated variant identified in a proband for use in subsequent targeted genetic testing in first-degree relatives |

Table PG2. ACMG-AMP Standards and Guidelines for Variant Classification

<table>
<thead>
<tr>
<th>Variant Classification</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pathogenic</td>
<td>Disease-causing change in the DNA sequence</td>
</tr>
<tr>
<td>Likely pathogenic</td>
<td>Likely disease-causing change in the DNA sequence</td>
</tr>
<tr>
<td>Variant of uncertain significance</td>
<td>Change in DNA sequence with uncertain effects on disease</td>
</tr>
<tr>
<td>Likely benign</td>
<td>Likely benign change in the DNA sequence</td>
</tr>
<tr>
<td>Benign</td>
<td>Benign change in the DNA sequence</td>
</tr>
</tbody>
</table>

ACMG: American College of Medical Genetics and Genomics; AMP: Association for Molecular Pathology.

Genetic Counseling
Experts recommend formal genetic counseling for patients who are at risk for inherited disorders and who wish to undergo genetic testing. Interpreting the results of genetic tests and understanding risk factors can be difficult for some patients; genetic counseling helps individuals understand the impact of genetic testing, including the possible effects the test results could have on the individual or their family members. It should be noted that genetic counseling may alter the utilization of genetic testing substantially and may reduce inappropriate testing; further, genetic counseling should
Whole Exome and Whole Genome Sequencing for Diagnosis of Genetic Disorders

Policy # 00389
Original Effective Date: 11/20/2013
Current Effective Date: 12/11/2019

be performed by an individual with experience and expertise in genetic medicine and genetic testing methods.

Background/Overview

Whole exome sequencing and whole genome sequencing

Whole exome sequencing (WES) is targeted next-generation sequencing of the subset of the human genome that contains functionally important sequences of protein-coding DNA, while whole genome sequencing (WGS) uses next-generation sequencing techniques to sequence both coding and noncoding regions of the genome. WES and WGS have been proposed for use in patients presenting with disorders and anomalies not explained by standard clinical workup. Potential candidates for WES and WGS include patients who present with a broad spectrum of suspected genetic conditions.

Given the variety of disorders and management approaches, there are a variety of potential health outcomes from a definitive diagnosis. In general, the outcomes of a molecular genetic diagnosis include (1) impacting the search for a diagnosis, (2) informing follow-up that can benefit a child by reducing morbidity, and (3) affecting reproductive planning for parents and potentially the affected patient.

The standard diagnostic workup for patients with suspected Mendelian disorders may include combinations of radiographic, electrophysiologic, biochemical, biopsy, and targeted genetic evaluations. The search for a diagnosis may thus become a time-consuming and expensive process.

WES and WGS Technology

WES or WGS using next-generation sequencing technology can facilitate obtaining a genetic diagnosis in patients efficiently. WES is limited to most of the protein-coding sequence of an individual (∼85%), is composed of about 20,000 genes and 180,000 exons (protein-coding segments of a gene), and constitutes approximately 1% of the genome. It is believed that the exome contains about 85% of heritable disease-causing variants. WES has the advantage of speed and efficiency relative to Sanger sequencing of multiple genes. WES shares some limitations with Sanger sequencing. For example, it will not identify the following: intronic sequences or gene regulatory regions; chromosomal changes; large deletions; duplications; or rearrangements within genes, nucleotide repeats, or epigenetic changes. WGS uses techniques similar to WES but includes
Whole Exome and Whole Genome Sequencing for Diagnosis of Genetic Disorders

Policy # 00389
Original Effective Date: 11/20/2013
Current Effective Date: 12/11/2019

noncoding regions. WGS has a greater ability to detect large deletions or duplications in protein-coding regions compared with WES but requires greater data analytics.

Technical aspects of WES and WGS are evolving, including the development of databases such as the National Institutes of Health’s ClinVar database (http://www.ncbi.nlm.nih.gov/clinvar/) to catalog variants, uneven sequencing coverage, gaps in exon capture before sequencing, and difficulties with narrowing the large initial number of variants to manageable numbers without losing likely candidate mutations. The variability contributed by the different platforms and procedures used by different clinical laboratories offering exome sequencing as a clinical service is unknown.

The American College of Medical Genetics and Genomics, Association for Molecular Pathology, and College of American Pathologists (2013) convened a workgroup to standardize terminology for describing sequence variants. Guidelines developed by this workgroup, published in 2015, describe criteria for classifying pathogenic and benign sequence variants based on 5 categories of data: pathogenic, likely pathogenic, uncertain significance, likely benign, and benign.

WES and WGS Testing Services

Several laboratories offer WES and WGS as a clinical service. For example, Illumina offers 3 TruGenome tests: the TruGenome Undiagnosed Disease Test (indicated to find the underlying genetic cause of an undiagnosed rare genetic disease of single-gene etiology), the TruGenome™ Predisposition Screen (indicated for healthy patients interested in learning about their carrier status and genetic predisposition toward adult-onset conditions), and the TruGenome™ Technical Sequence Data (WGS for labs and physicians who will make their own clinical interpretations). Ambry Genetics offers 2 WES tests, the ExomeNext and ExomeNext-Rapid, which sequence both the nuclear and the mitochondrial genomes. GeneDx offers WES with its XomeDx™ test. Medical centers may also offer WES and WGS as a clinical service.

Examples of laboratories offering WES as a clinical service and their indications for testing are summarized in Table 1.
Table 1. Examples of Laboratories Offering Whole Exome Sequencing as a Clinical Service

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>Laboratory Indications for Testing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambry Genetics</td>
<td>“The patient's clinical presentation is unclear/atypical disease and there are multiple genetic conditions in the differential diagnosis.”</td>
</tr>
<tr>
<td>GeneDx</td>
<td>“a patient with a diagnosis that suggests the involvement of one or more of many different genes, which would, if even available and sequenced individually, be prohibitively expensive”</td>
</tr>
<tr>
<td>Baylor College of Medicine</td>
<td>“used when a patient’s medical history and physical exam findings strongly suggest that there is an underlying genetic etiology. In some cases, the patient may have had an extensive evaluation consisting of multiple genetic tests, without identifying an etiology.”</td>
</tr>
<tr>
<td>Illumina</td>
<td>The TruGenome Undiagnosed Disease Test is indicated to find the underlying genetic cause of an undiagnosed rare genetic disease of single-gene etiology.</td>
</tr>
<tr>
<td>University of California Los Angeles Health System</td>
<td>“This test is intended for use in conjunction with the clinical presentation and other markers of disease progression for the management of patients with rare genetic disorders.”</td>
</tr>
<tr>
<td>EdgeBio</td>
<td>Recommended “In situations where there has been a diagnostic failure with no discernible path. In situations where there are...”</td>
</tr>
</tbody>
</table>
 Whole Exome and Whole Genome Sequencing for Diagnosis of Genetic Disorders

Policy # 00389
Original Effective Date: 11/20/2013
Current Effective Date: 12/11/2019

<table>
<thead>
<tr>
<th>Provider</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Children’s Mercy Hospitals and Clinics (Kansas City, MO)</td>
<td>Currently no available tests to determine the status of a potential genetic disease. In situations with atypical findings indicative of multiple disease[s].”</td>
</tr>
<tr>
<td>Emory Genetics Laboratory</td>
<td>“Indicated when there is a suspicion of a genetic etiology contributing to the proband’s manifestations.”</td>
</tr>
<tr>
<td></td>
<td>Provided as a service to families with children who have had an extensive negative workup for a genetic disease; also used to identify novel disease genes.</td>
</tr>
</tbody>
</table>

Note that this evidence review does not address the use of WES and WGS for preimplantation genetic diagnosis or screening, prenatal (fetal) testing, or for testing of cancer cells.

FDA or Other Governmental Regulatory Approval

U.S. Food and Drug Administration (FDA)

Clinical laboratories may develop and validate tests in-house and market them as a laboratory service; laboratory-developed tests must meet the general regulatory standards of the Clinical Laboratory Improvement Amendments. WES or WGS tests as a clinical service are available under the auspices of the Clinical Laboratory Improvement Amendments. Laboratories that offer laboratory-developed tests must be licensed by the Clinical Laboratory Improvement Amendments for high-complexity testing. To date, the U.S. Food and Drug Administration has chosen not to require any regulatory review of this test.

Rationale/Source

This medical policy was developed through consideration of peer-reviewed medical literature generally recognized by the relevant medical community, U.S. Food and Drug Administration approval status, nationally accepted standards of medical practice and accepted standards of medical practice in this community, Blue Cross and Blue Shield Association technology assessment program.
Whole Exome and Whole Genome Sequencing for Diagnosis of Genetic Disorders

Policy # 00389
Original Effective Date: 11/20/2013
Current Effective Date: 12/11/2019

(TEC) and other non-affiliated technology evaluation centers, reference to federal regulations, other plan medical policies, and accredited national guidelines.

Whole exome sequencing (WES) sequences the portion of the genome that contains protein-coding DNA, while whole genome sequencing (WGS) sequences both coding and noncoding regions of the genome. WES and WGS have been proposed for use in patients presenting with disorders and anomalies not explained by standard clinical workup. Potential candidates for WES and WGS include patients who present with a broad spectrum of suspected genetic conditions.

For individuals who have multiple unexplained congenital anomalies or a neurodevelopmental disorder who receive WES, the evidence includes large case series and within-subject comparisons. Relevant outcomes are test validity, functional outcomes, changes in reproductive decision making, and resource utilization. Patients who have multiple congenital anomalies or a developmental disorder with a suspected genetic etiology, but whose specific genetic alteration is unclear or unidentified by standard clinical workup, may be left without a clinical diagnosis of their disorder, despite a lengthy diagnostic workup. For a substantial proportion of these patients, WES may return a likely pathogenic variant. Several large and smaller series have reported diagnostic yields of WES ranging from 25% to 60%, depending on the individual’s age, phenotype, and previous workup. One comparative study found a 44% increase in yield compared with standard testing strategies. Many of the studies have also reported changes in patient management, including medication changes, discontinuation of or additional testing, ending the diagnostic odyssey, and family planning. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

For individuals who have a suspected genetic disorder other than multiple congenital anomalies or a neurodevelopmental disorder who receive WES, the evidence includes small case series and prospective research studies. Relevant outcomes are test validity, functional outcomes, changes in reproductive decision making, and resource utilization. There is an increasing number of reports evaluating the use of WES to identify a molecular basis for disorders other than multiple congenital anomalies or neurodevelopmental disorders. The diagnostic yields in these studies range from as low as 3% to 60%. One concern with WES is the possibility of incidental findings. Some studies have reported on the use of a virtual gene panel with restricted analysis of disease-associated genes, and WES data allows reanalysis as new genes are linked to the patient phenotype. Overall, a limited number of patients have been studied for any specific disorder, and clinical use of WES for these
Whole Exome and Whole Genome Sequencing for Diagnosis of Genetic Disorders

Policy # 00389
Original Effective Date: 11/20/2013
Current Effective Date: 12/11/2019

disorders is at an early stage. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals with a suspected genetic disorder who receive WGS, the evidence includes case series. Relevant outcomes are test validity, functional outcomes, changes in reproductive decision making, and resource utilization. WGS has increased coverage and diagnostic yield compared with WES, but the technology is limited by the amount of data generated and greater need for storage and analytic capability. Several authors have proposed that as WGS becomes feasible on a larger scale, it may in the future become the standard first-tier diagnostic test. At present, there is limited data on the clinical use of WGS. The evidence is insufficient to determine the effects of the technology on health outcomes.

Supplemental Information

Practice Guidelines and Position Statements

American College of Medical Genetics and Genomics
The American College of Medical Genetics and Genomics (ACMG) has recommended that diagnostic testing with whole exome sequencing (WES) and whole genome sequencing (WGS) should be considered in the clinical diagnostic assessment of a phenotypically affected individual when:

a. “The phenotype or family history data strongly implicate a genetic etiology, but the phenotype does not correspond with a specific disorder for which a genetic test targeting a specific gene is available on a clinical basis.

b. A patient presents with a defined genetic disorder that demonstrates a high degree of genetic heterogeneity, making WES or WGS analysis of multiple genes simultaneously a more practical approach.

c. A patient presents with a likely genetic disorder but specific genetic tests available for that phenotype have failed to arrive at a diagnosis.

d. A fetus with a likely genetic disorder in which specific genetic tests, including targeted sequencing tests, available for that phenotype have failed to arrive at a diagnosis.”

ACMG has recommended that for screening purposes:
Whole Exome and Whole Genome Sequencing for Diagnosis of Genetic Disorders

Policy # 00389
Original Effective Date: 11/20/2013
Current Effective Date: 12/11/2019

WGS/WES may be considered in preconception carrier screening, using a strategy to focus on genetic variants known to be associated with significant phenotypes in homozygous or hemizygous progeny.

ACMG has also recommended that WGS and WES not be used at this time as an approach to prenatal screening or as a first-tier approach for newborn screening.

ACMG guidelines (2014) on the clinical evaluation and etiologic diagnosis of hearing loss stated that for individuals with findings suggestive of a syndromic genetic etiology for hearing loss, “pretest genetic counseling should be provided, and, with patient’s informed consent, genetic testing, if available, should be ordered to confirm the diagnosis-this testing may include single-gene tests, hearing loss sequencing panels, WES, WGS, chromosome analysis, or microarray-based copy number analysis, depending on clinical findings.”

ACMG (2016) updated its recommendations on reporting incidental findings in WGS and WES testing. ACMG determined that reporting some incidental findings would likely have medical benefit for the patients and families of patients undergoing clinical sequencing, recommending that, when a report is issued for clinically indicated exome and genome sequencing, a minimum list of conditions, genes, and variants should be routinely evaluated and reported to the ordering clinician. The 2016 update added 4 genes and removed of 1 gene resulting in an updated secondary findings minimum list including 59 medically actionable genes recommended for return in clinical genomic sequencing.

American Academy of Neurology et al
The American Academy of Neurology and American Association of Neuromuscular and Electrodiagnostic Medicine (2014) issued evidence-based guidelines on the diagnosis and treatment of limb-girdle and distal dystrophies, which made the following recommendations (see Table 2).
Whole Exome and Whole Genome Sequencing for Diagnosis of Genetic Disorders

Policy # 00389
Original Effective Date: 11/20/2013
Current Effective Date: 12/11/2019

Table 2. Guidelines on LGMD

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>LOE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnosis</td>
<td></td>
</tr>
<tr>
<td>• For patients with suspected muscular dystrophy, clinicians should use a clinical approach to guide genetic diagnosis based on the clinical phenotype, including the pattern of muscle involvement, inheritance pattern, age at onset, and associated manifestations (e.g., early contractures, cardiac or respiratory involvement).</td>
<td>B</td>
</tr>
<tr>
<td>• In patients with suspected muscular dystrophy in whom initial clinically directed genetic testing does not provide a diagnosis, clinicians may obtain genetic consultation or perform parallel sequencing of targeted exomes, whole-exome sequencing, whole-genome screening, or next-generation sequencing to identify the genetic abnormality.</td>
<td>C</td>
</tr>
<tr>
<td>Management of cardiac complications</td>
<td></td>
</tr>
<tr>
<td>• Clinicians should refer newly diagnosed patients with (1) limb-girdle muscular dystrophy (LGMD)1A, LGMD1B, LGMD1D, LGMD1E, LGMD2C-K, LGMD2M-P, … or (2) muscular dystrophy without a specific genetic diagnosis for cardiology evaluation, including electrocardiogram (ECG) and structural evaluation (echocardiography or cardiac magnetic resonance imaging [MRI]), even if they are asymptomatic from a cardiac standpoint, to guide appropriate management.</td>
<td>B</td>
</tr>
</tbody>
</table>
Recommendation | LOE
---|---
- If ECG or structural cardiac evaluation (e.g., echocardiography) has abnormal results, or if the patient has episodes of syncope, near-syncope, or palpitations, clinicians should order rhythm evaluation (e.g., Holter monitor or event monitor) to guide appropriate management. | B

- Clinicians should refer muscular dystrophy patients with palpitations, symptomatic or asymptomatic tachycardia or arrhythmias, or signs and symptoms of cardiac failure for cardiology evaluation. | B

- It is not obligatory for clinicians to refer patients with LGMD2A, LGMD2B, and LGMD2L for cardiac evaluation unless they develop overt cardiac signs or symptoms. | B

Management of pulmonary complications

- Clinicians should order pulmonary function testing (spirometry and maximal inspiratory/expiratory force in the upright and, if normal, supine positions) or refer for pulmonary evaluation (to identify and treat respiratory insufficiency) in muscular dystrophy patients at the time of diagnosis, or if they develop pulmonary symptoms later in their course. | B

- In patients with a known high risk of respiratory failure (e.g., those with LGMD2I ...), clinicians should obtain periodic pulmonary function testing (spirometry and maximal inspiratory/expiratory force in the upright position and, if normal, in the supine position) or evaluation by a pulmonologist to identify and treat respiratory insufficiency. | B
Whole Exome and Whole Genome Sequencing for Diagnosis of Genetic Disorders

Policy # 00389
Original Effective Date: 11/20/2013
Current Effective Date: 12/11/2019

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>LOE</th>
</tr>
</thead>
<tbody>
<tr>
<td>• It is not obligatory for clinicians to refer patients with LGMD2B and</td>
<td>C</td>
</tr>
<tr>
<td>LGMD2L for pulmonary evaluation unless they are symptomatic.</td>
<td></td>
</tr>
<tr>
<td>• Clinicians should refer muscular dystrophy patients with excessive daytime</td>
<td>B</td>
</tr>
<tr>
<td>somnolence, nonrestorative sleep (e.g., frequent nocturnal arousals, morning</td>
<td></td>
</tr>
<tr>
<td>headaches, excessive daytime fatigue), or respiratory insufficiency based on</td>
<td></td>
</tr>
<tr>
<td>pulmonary function tests for pulmonary or sleep medicine consultation for</td>
<td></td>
</tr>
<tr>
<td>consideration of noninvasive ventilation to improve quality of life.</td>
<td></td>
</tr>
</tbody>
</table>

LOE: level of evidence; LGMD: limb-girdle muscular dystrophy.

U.S. Preventive Services Task Force Recommendations
Not applicable.

Medicare National Coverage
There is no national coverage determination. In the absence of a national coverage determination, coverage decisions are left to the discretion of local Medicare carriers.

Ongoing and Unpublished Clinical Trials
Some currently unpublished trials that might influence this review are listed in Table 3.

Table 3. Summary of Key Trials

<table>
<thead>
<tr>
<th>NCT No.</th>
<th>Trial Name</th>
<th>Planned Enrollment</th>
<th>Completion Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ongoing</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

©2019 Blue Cross and Blue Shield of Louisiana

Blue Cross and Blue Shield of Louisiana is an independent licensee of the Blue Cross and Blue Shield Association and incorporated as Louisiana Health Service & Indemnity Company.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without permission from Blue Cross and Blue Shield of Louisiana.
Whole Exome and Whole Genome Sequencing for Diagnosis of Genetic Disorders

Policy # 00389
Original Effective Date: 11/20/2013
Current Effective Date: 12/11/2019

<table>
<thead>
<tr>
<th>NCT</th>
<th>Study Description</th>
<th>Cost Estimate</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCT02826694</td>
<td>North Carolina Newborn Exome Sequencing for Universal Screening</td>
<td>400</td>
<td>Aug 2018 (ongoing)</td>
</tr>
<tr>
<td>NCT03211039</td>
<td>Prenatal Precision Medicine (NSIGHT2): A Randomized, Blinded, Prospective Study of the Clinical Utility of Rapid Genomic Sequencing for Infants in the Acute-care Setting</td>
<td>1000</td>
<td>Dec 2018</td>
</tr>
<tr>
<td>NCT02699190</td>
<td>LeukoSEQ: Whole Genome Sequencing as a First-Line Diagnostic Tool for Leukodystrophies</td>
<td>50</td>
<td>Apr 2020</td>
</tr>
<tr>
<td>NCT03548779</td>
<td>North Carolina Genomic Evaluation by Next-generation Exome Sequencing, 2</td>
<td>1700</td>
<td>May 2021</td>
</tr>
<tr>
<td>Unpublished</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCT02380729</td>
<td>Mutation Exploration in Non-acquired, Genetic Disorders and Its Impact on Health Economy and Life Quality</td>
<td>200</td>
<td>Dec 2017 (completed)</td>
</tr>
</tbody>
</table>

NCT: national clinical trial.
Whole Exome and Whole Genome Sequencing for Diagnosis of Genetic Disorders

Policy # 00389
Original Effective Date: 11/20/2013
Current Effective Date: 12/11/2019

References
Whole Exome and Whole Genome Sequencing for Diagnosis of Genetic Disorders

Policy # 00389
Original Effective Date: 11/20/2013
Current Effective Date: 12/11/2019

©2019 Blue Cross and Blue Shield of Louisiana

Blue Cross and Blue Shield of Louisiana is an independent licensee of the Blue Cross and Blue Shield Association and incorporated as Louisiana Health Service & Indemnity Company.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without permission from Blue Cross and Blue Shield of Louisiana.
Whole Exome and Whole Genome Sequencing for Diagnosis of Genetic Disorders

Policy # 00389
Original Effective Date: 11/20/2013
Current Effective Date: 12/11/2019

Whole Exome and Whole Genome Sequencing for Diagnosis of Genetic Disorders

Policy # 00389
Original Effective Date: 11/20/2013
Current Effective Date: 12/11/2019

Policy History
Original Effective Date: 11/20/2013
Current Effective Date: 12/11/2019
11/07/2013 Medical Policy Committee review
12/04/2014 Medical Policy Committee review
12/17/2014 Medical Policy Implementation Committee approval. Title changed from “Whole Exome Sequencing” to “Whole Exome and Whole Genome Sequencing for Diagnosis of Genetic Disorders.” The policy investigational section was revised to clarify that the intent of the policy is limited to the diagnosis of genetic disorders.
08/03/2015 Coding update: ICD10 Diagnosis code section added; ICD9 Procedure code section removed.
12/03/2015 Medical Policy Committee review
12/16/2015 Medical Policy Implementation Committee approval. No change to coverage eligibility.
12/01/2016 Medical Policy Committee review
12/21/2016 Medical Policy Implementation Committee approval. Added eligibility statement for WES with criteria and INV statement for WES and WGS in screening for genetic disorders.
01/01/2017 Coding update: Removing ICD-9 Diagnosis Codes
08/01/2017 Coding update
12/07/2017 Medical Policy Committee review

©2019 Blue Cross and Blue Shield of Louisiana

Blue Cross and Blue Shield of Louisiana is an independent licensee of the Blue Cross and Blue Shield Association and incorporated as Louisiana Health Service & Indemnity Company.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without permission from Blue Cross and Blue Shield of Louisiana.
Whole Exome and Whole Genome Sequencing for Diagnosis of Genetic Disorders

Policy # 00389
Original Effective Date: 11/20/2013
Current Effective Date: 12/11/2019

12/20/2017 Medical Policy Implementation Committee approval. Coverage eligibility unchanged.
12/06/2018 Medical Policy Committee review
12/19/2018 Medical Policy Implementation Committee approval. Coverage eligibility unchanged.
06/17/2019 Coding update
12/05/2019 Medical Policy Committee review
05/11/2020 Coding update
09/22/2020 Coding update

Next Scheduled Review Date: 12/2020

Coding

The five character codes included in the Blue Cross Blue Shield of Louisiana Medical Policy Coverage Guidelines are obtained from Current Procedural Terminology (CPT®), copyright 2018 by the American Medical Association (AMA). CPT is developed by the AMA as a listing of descriptive terms and five character identifying codes and modifiers for reporting medical services and procedures performed by physician.

The responsibility for the content of Blue Cross Blue Shield of Louisiana Medical Policy Coverage Guidelines is with Blue Cross and Blue Shield of Louisiana and no endorsement by the AMA is intended or should be implied. The AMA disclaims responsibility for any consequences or liability attributable or related to any use, nonuse or interpretation of information contained in Blue Cross Blue Shield of Louisiana Medical Policy Coverage Guidelines. Fee schedules, relative value units, conversion factors and/or related components are not assigned by the AMA, are not part of CPT, and the AMA is not recommending their use. The AMA does not directly or indirectly practice medicine or dispense medical services. The AMA assumes no liability for data contained or not contained herein. Any use of CPT outside of Blue Cross Blue Shield of Louisiana Medical Policy Coverage Guidelines should refer to the most current Current Procedural Terminology which contains the complete and most current listing of CPT codes and descriptive terms. Applicable FARS/DFARS apply.
Whole Exome and Whole Genome Sequencing for Diagnosis of Genetic Disorders

Policy # 00389
Original Effective Date: 11/20/2013
Current Effective Date: 12/11/2019

CPT is a registered trademark of the American Medical Association.

Codes used to identify services associated with this policy may include (but may not be limited to) the following:

<table>
<thead>
<tr>
<th>Code Type</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPT</td>
<td>0012U, 0094U, 81415, 81416, 81417, 81425, 81426, 81427, 81479</td>
</tr>
<tr>
<td></td>
<td>Add codes eff 10/1/2020: 0212U, 0214U, 0215U</td>
</tr>
<tr>
<td>HCPCS</td>
<td>No codes</td>
</tr>
<tr>
<td>ICD-10 Diagnosis</td>
<td>All related diagnoses</td>
</tr>
</tbody>
</table>

*Investigational – A medical treatment, procedure, drug, device, or biological product is Investigational if the effectiveness has not been clearly tested and it has not been incorporated into standard medical practice. Any determination we make that a medical treatment, procedure, drug, device, or biological product is Investigational will be based on a consideration of the following:

A. Whether the medical treatment, procedure, drug, device, or biological product can be lawfully marketed without approval of the U.S. Food and Drug Administration (FDA) and whether such approval has been granted at the time the medical treatment, procedure, drug, device, or biological product is sought to be furnished; or

B. Whether the medical treatment, procedure, drug, device, or biological product requires further studies or clinical trials to determine its maximum tolerated dose, toxicity, safety, effectiveness, or effectiveness as compared with the standard means of treatment or diagnosis, must improve health outcomes, according to the consensus of opinion among experts as shown by reliable evidence, including:

1. Consultation with the Blue Cross and Blue Shield Association technology assessment program (TEC) or other nonaffiliated technology evaluation center(s);
2. Credible scientific evidence published in peer-reviewed medical literature generally recognized by the relevant medical community; or
3. Reference to federal regulations.

**Medically Necessary (or “Medical Necessity”) - Health care services, treatment, procedures, equipment, drugs, devices, items or supplies that a Provider, exercising prudent clinical judgment, would provide to a patient for the purpose of preventing, evaluating, diagnosing or treating an illness, injury, disease or its symptoms, and that are:
Whole Exome and Whole Genome Sequencing for Diagnosis of Genetic Disorders

Policy # 00389
Original Effective Date: 11/20/2013
Current Effective Date: 12/11/2019

A. In accordance with nationally accepted standards of medical practice;
B. Clinically appropriate, in terms of type, frequency, extent, level of care, site and duration, and considered effective for the patient's illness, injury or disease; and
C. Not primarily for the personal comfort or convenience of the patient, physician or other health care provider, and not more costly than an alternative service or sequence of services at least as likely to produce equivalent therapeutic or diagnostic results as to the diagnosis or treatment of that patient's illness, injury or disease.

For these purposes, “nationally accepted standards of medical practice” means standards that are based on credible scientific evidence published in peer-reviewed medical literature generally recognized by the relevant medical community, Physician Specialty Society recommendations and the views of Physicians practicing in relevant clinical areas and any other relevant factors.

‡ Indicated trademarks are the registered trademarks of their respective owners.

NOTICE: If the Patient’s health insurance contract contains language that differs from the BCBSLA Medical Policy definition noted above, the definition in the health insurance contract will be relied upon for specific coverage determinations.

NOTICE: Medical Policies are scientific based opinions, provided solely for coverage and informational purposes. Medical Policies should not be construed to suggest that the Company recommends, advocates, requires, encourages, or discourages any particular treatment, procedure, or service, or any particular course of treatment, procedure, or service.